Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
OPTIMIZACIJA RAZMESTITVE STROJEV V VALJARNI S POMOČJO GENETSKEGA ALGORITMA
Authors:
ID
Rožej, Urban
(Author)
ID
Brezočnik, Miran
(Mentor)
More about this mentor...
ID
Kovačič, Miha
(Comentor)
Files:
VS_Rozej_Urban_2011.pdf
(1,87 MB)
MD5: B6A0A3A6C59FF71677F64340DCB4963C
PID:
20.500.12556/dkum/4c8ec4b6-12fc-4289-bc66-7df619a80a20
Language:
Slovenian
Work type:
Undergraduate thesis
Typology:
2.11 - Undergraduate Thesis
Organization:
FS - Faculty of Mechanical Engineering
Abstract:
Štore Steel d.o.o. je fleksibilna mini jeklarna, specializirana za dobavo jekel v manjših serijah. V letu 2010 je predviden zagon nove konti proge s tehnično letno kapaciteto 250.000 ton. Nova konti valjarska proga bo poleg povišane produktivnosti omogočala bistveno višji nivo kvalitete valjancev (tolerance, ravnost, površina, trdote), obenem pa s sodobnejšo avtomatizacijo tudi bistveno višji nivo zbiranja in prenosa informacij o izvršeni proizvodnji. Konfiguracija proge bo omogočala temeljitejšo on-line vzorčno kontrolo valjancev in posledično hitrejše ukrepanje, če bi prišlo do neskladnosti. Zgoraj navedene spremembe bodo bistveno vplivale tudi na bodoče izvajanje dodatnih opravil na valjancih (obrat adjustaže), obenem pa bo obstajala možnost premestitve strojev obrata adjustaže na nove lokacije. Cilj naloge je poiskati najprimernejšo razporeditev strojne opreme v obratu adjustaže in posledično transportnih poti glede na obstoječ proizvodni program in prostorske zmožnosti. Za reševanje problema razvrščanja strojev je bil uporabljen genetski algoritem, ki posnema evolucijo živih bitij. Dosežena je bila optimalna razmestitev strojev in s tem krajše transportne poti glede na dosedanje stanje.
Keywords:
valjarna
,
optimizacija razmestitve strojev
,
optimizacija
,
evolucijsko računanje
,
genetski algoritmi
Place of publishing:
Maribor
Publisher:
[U. Rožej]
Year of publishing:
2011
PID:
20.500.12556/DKUM-17402
UDC:
621.9:658.5(043.2)
COBISS.SI-ID:
14827798
NUK URN:
URN:SI:UM:DK:9JL8XKJF
Publication date in DKUM:
11.03.2011
Views:
3474
Downloads:
268
Metadata:
Categories:
KTFMB - FS
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ROŽEJ, Urban, 2011,
OPTIMIZACIJA RAZMESTITVE STROJEV V VALJARNI S POMOČJO GENETSKEGA ALGORITMA
[online]. Bachelor’s thesis. Maribor : U. Rožej. [Accessed 24 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=17402
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Simulacija in optimiranje procesa sortiranja na sortirnem stroju "GREFA"
Simulacija poteka proizvodnje betonskih cevi
Razvoj 3D simulacijskega modela prometnih tokov z več strežnimi mesti
Razvoj simulacijskega modela odpovedi izdelkov v garancijski dobi
Simulacijski model primernosti investicije v novo opremo v podjetju O.D.M.
Similar works from other repositories:
Virtualni peskovnik subkulturnega udejstvovanja
Uporaba programskega modula Scicos za gospodarskega inženirja
Sociologija, ekonomika, lastništvo in pravo v navideznih svetovih ter njihove posledice v resničnem svetu
Urejanje besedil z odprtokodnimi urejevalniki
On the role of statistical methods in machine tranlsation between related languages
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
OPTIMIZATION OF MACHINES ARRANGEMENT IN ROLLING MILL BY GENETIC ALGORITHM
Abstract:
Štore Steel d.o.o. is a flexible mini steel factory that specializes in supply of steel in smaller series. In 2010 a starting of a new konti line, having a technical capacity of 250.000 tons a year is planned. A new konti fulling mill lane will, beside the enhanced productivity, enable a higher level of cylinder quality (tolerance, evenness, surface, hardness) and with Level 2 automation significantly higher level of gathering and transferring of data on executed production. Configuration of the lane will enable a more thorough on-line cylinder sample control and consequently faster responsiveness in a sense of eliminating inconsistencies. The above mentioned changes will have a significant influence on future execution of additional actions on cylinders (finishing plant), and will also open a possibility for relocation of machines in the finishing plant to a new location. The goal of this research is finding the most appropriate arrangement of the machinery equipment in the finishing plant as well as finding the most appropriate transport route, according to the current production programme and spatial ability. To solve the problem of arranging machines, a genetic algorithm imitating the evolution of living creatures has been used. We reached the optimal layout of machinery and the shorter routes on the existing situation.
Keywords:
mill
,
optimization deployment machines
,
optimization
,
evolutionary computation
,
genetic algorithms
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back