Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
HIBRIDNI PRISTOP ZA ZAZNAVO ELEMENTOV SUBJEKTIVNOSTI V BESEDILNIH TOKOVIH
Authors:
ID
Verlič, Mateja
(Author)
ID
Kokol, Peter
(Mentor)
More about this mentor...
ID
Zorman, Milan
(Comentor)
Files:
DR_Verlic_Mateja_2009.pdf
(2,68 MB)
MD5: D79D00773A7EAE71B2C8B85943E42F2B
PID:
20.500.12556/dkum/da602b30-a33d-4a3c-b13a-a967779299d0
Language:
Slovenian
Work type:
Dissertation
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
Analiza razpoloženja je dokaj nova veja besedilnega rudarjenja, ki je zadnji čas še posebej priljubljena zaradi ogromnega potenciala za raziskovanje javnega mnenja na najrazličnejših področjih. Za razliko od priklica informacij in računalniške lingvistike, na katerih je osnovana, se analiza razpoloženja ne osredotoča na teme v dokumentu ali na objektivne informacije (o lokaciji, času,osebah), ampak na subjektivno mnenje, ki ga pisec izraža v dokumentu. Še posebej zanimiva je za analizo besedilnih tokov, ki so besedila s posebnimi lastnostmi dostopna na spletu. Obstaja veliko možnosti uporabe, na primer spremljanje mnenj o določenem produktu ali storitvi, spremljanje javnega mnenja o političnih kandidatih med volitvami ali o družbeno-političnih dogajanjih in podobno. Pri analizi razpoloženja ne gre le za zaznavanje mnenja, ampak tudi za izločitev ustreznih značilk, na podlagi katerih se mnenje opredeli kot pozitivno (dobro) ali negativno (slabo). V doktorski disertaciji smo raziskali polavtomatsko in avtomatsko prepoznavanje elementov subjektivnosti, ki so nosilci mnenja oziroma razpoloženja, na osnovi katerih smo zgradili slovarje za nadaljnjo klasifikacijo. Predstavili smo nov hibridni pristop h klasifikaciji razpoloženja in orodje, ki ta pristop implementira. V disertaciji smo združili ideje s področja strojnega učenja, priklica informacij, računalniške lingvistike in tudi s področja psihologije.
Keywords:
analiza razpoloženja
,
rudarjenje mnenja
,
rudarjenje po besedilih
,
klasifikacija
,
strojno učenje
Place of publishing:
Maribor
Publisher:
[M. Verlič]
Year of publishing:
2009
PID:
20.500.12556/DKUM-12689
UDC:
004.6:004.55(043.3)
COBISS.SI-ID:
13698838
NUK URN:
URN:SI:UM:DK:WHNX8XNA
Publication date in DKUM:
11.12.2009
Views:
3057
Downloads:
377
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
VERLIČ, Mateja, 2009,
HIBRIDNI PRISTOP ZA ZAZNAVO ELEMENTOV SUBJEKTIVNOSTI V BESEDILNIH TOKOVIH
[online]. Doctoral dissertation. Maribor : M. Verlič. [Accessed 22 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=12689
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Complex interdependency of microstructure, mechanical properties, fatigue resistance, and residual stress of austenitic stainless steels AISI 304L
Influence of deep cryogenic treatment on natural and artificial aging of Al-Mg-Si alloy EN AW 6026
The effect of heat treatment on the interface of 155 PH martensitic stainless steel and SAF 2507 duplex steel in functionally graded AM components
Influence of the deep cryogenic treatment on AISI 52100 and AISI D3 steelʼs corrosion resistance
Altering tribological properties of tools steel through deep cryo-genic treatment utilization
Similar works from other repositories:
No similar works found
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
Hybrid approach to detection of elements of subjectivity in text streams
Abstract:
Sentiment analysis or opinion mining is relatively new branch of text mining and is very popular lately especially because of the potential for mining public opinion in different areas of interest. In comparison to Information retrieval and Computational Linguistics, opinion mining is not focused on topics or objective data (location, time, people) but on subjective opinion of the document writer. Sentiment analysis is especially interesting for analyzing text streams, which are texts with special characteristics available on the web. There are many possibilities of applying sentiment analysis, for example, it can be used to track opinions on some special product or service, tracking public opinion on political candidates during election time or on some political situations. Opinion mining is not only about determining opinions, but also to extract features that can be used to determine, whether opinion was positive (good) or negative (bad). This thesis describes we researched semi-automated and automated detection of subjective elements - terms bearing opinion or sentiment and which served as a basis for lexicons to be later used in classification. New hybrid method of sentiment classification has been proposed and implemented in our tool SentimentHitchhicker. Thesis combines ideas and methods from different fields, including machine learning, information retrieval, computer linguistics and psychology.
Keywords:
sentiment analysis
,
opinion mining
,
text mining
,
machine learning
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back