Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Diofantske četverice
Authors:
ID
Špec, Jožica
(Author)
ID
Eremita, Daniel
(Mentor)
More about this mentor...
Files:
UNI_Spec_Jozica_2009.pdf
(347,41 KB)
MD5: 06AF56294D132D9549D0BE45595989A2
PID:
20.500.12556/dkum/46dd4479-0d19-4f3b-901c-80174b8e4db3
Language:
Slovenian
Work type:
Undergraduate thesis
Organization:
FNM - Faculty of Natural Sciences and Mathematics
Abstract:
Diofantska množica S je množica takih naravnih števil, da je x*y+1 popolni kvadrat, za vse x različne od y iz množice S. Diofantski množici s štirimi elementi pravimo diofantska četverica. Problem diofantskih četveric, je v tretjem stoletju prvi predstavil grški matematik Diofant iz Aleksandrije. Namen diplomskega dela je opisati vse regularne diofantske četverice oblike {1, b, c, d}, kjer je 1<b<c<d, ter izpeljati algoritme za njihovo konstrukcijo. Prvo poglavje je namenjeno reševanju Pellovih enačb, saj moramo za konstrukcijo vseh regularnih diofantskih četveric, oblike {1, b, c, d}, najprej rešiti nekaj Pellovih enačb oblike x^2-d^2=L, kjer je L različen od +1 ali -1, katere imajo več neskončnih družin rešitev. V drugem poglavju je predstavljen problem diofantskih četveric. Poglavje opisuje zgodovinsko ozadje raziskovanja na problemu diofantskih četveric. Opisana je povezava med Fibonaccijevim zaporedjem in diofantskimi četvericami. Predstavljen je problem nadgradnje diofantske trojke do diofantske četverice. V tretjem poglavju je predstavljena konstrukcija neskončne družine regularnih diofantskih četveric oblike {1, b, c, d}, kjer je 1<b<c<d. V četrtem poglavju karakteriziramo vse regularne diofantske četverice oblike {1, b, c, d} in podamo dva algoritma za njihovo konstrukcijo.
Keywords:
diofantska množica
,
diofantska četverica
,
regularna diofantska četverica
,
Pellova enačba
,
Fibonaccijevo zaporedje
Place of publishing:
Maribor
Publisher:
[J. Špec]
Year of publishing:
2009
PID:
20.500.12556/DKUM-10463
UDC:
51(043.2)
COBISS.SI-ID:
16900872
NUK URN:
URN:SI:UM:DK:VW70T5YD
Publication date in DKUM:
04.06.2009
Views:
3091
Downloads:
193
Metadata:
Categories:
FNM
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ŠPEC, Jožica, 2009,
Diofantske četverice
[online]. Bachelor’s thesis. Maribor : J. Špec. [Accessed 23 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=10463
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Naloge za Matematiko 3
Naloge za Matematiko 3
Uporaba matematičnih metod v logistiki 2
Optimizacija z rojem delavcev
Naloge iz kolokvijev Matematike 1
Similar works from other repositories:
An introduction to graph theory
Networks, topology and dynamics
Math 568 - Linear Algebra
Proklova hipopeda
Dejnostratova kvadratrisa
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
Diophantine quadruples
Abstract:
A set S of positive integers is said to have a Diophantine property, and called a Diophantine set, if x*y+1 is a perfect square for any x different from y, where x and y belongs to the set S. Diophantine set with four elements is called Diophantine quadruple. The problem of Diophantine quadruples was originally posed by the Greek mathematician Diophantus from Aleksandria in the third century. Our purpose is to describe all regular Diophantine quadruples of the form {1, b, c, d}, where 1<b<c<d, and also to obtain algorithms for their construction. First chapter describes the subject of Pell’s equations. In order to generate all regular Diophantine quadruples emanating from 1, i. e., {1, b, c, d}, we need to solve some non-unit Pell equations which have several infinitive families of solution. In the second chapter the problem of Diophantine quadruples is presented. The chapter describes historical background research about the problem of Diophantine quadruples. It includes explanation of the connection between Fibonacci’s sequence and Diophantine quadruples. The problem of upgrading a Diophantine triple to Diophantine quadruple is also considered. In the third chapter, the construction of infinite family of regular Diophantine quadruples of the form {1, b, c, d}, where 1<b<c<d, is presented. In the fourth chapter we characterize the regular Diophantine quadruples emanating from 1, and the chapter includes the description of two algorithms for construction of regular Diophantine quadruples of the form {1, b, c, d}.
Keywords:
Diophantine set
,
Diophantine quadruple
,
regular Diophantine quadruple
,
Pell`s equation
,
Fibonacci’s sequence
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back