| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:FIBONACCIJEVA ŠTEVILA
Authors:ID Toplak, Stanislava (Author)
ID Milutinović, Uroš (Mentor) More about this mentor... New window
Files:.pdf UNI_Toplak_Stanislava_2009.pdf (743,06 KB)
MD5: DD706793EDB1B059830ED3B34AF7B587
PID: 20.500.12556/dkum/35d56400-f8e9-4e38-9242-c359600aac4c
 
Language:Slovenian
Work type:Undergraduate thesis
Organization:FNM - Faculty of Natural Sciences and Mathematics
Abstract: Zaporedje Fibonaccijevih števil je definirano z F0 = 0, F1 = 1 in za n≥2, Fn=F(n-1)+ F(n-2). Fibonaccijeva števila imajo dolgo in bogato zgodovino. Poznamo jih odkar je v začetku 13. stol. Leonardo Fibonacci postavil svoje znamenito vprašanje o razmnoževanju zajčkov. V tem diplomskem delu predstavljamo kombinatorični pristop k dokazovanju izrekov vezanih na Fibonaccijeva, Lucasova in Gibonaccijeva števila. Predstavljenih pa je tudi nekaj povezav med filotakso in zlatim rezom s Fibonaccijevimi števili.
Keywords:matematika, Fibonaccijeva števila, Lucasova števila, Gibonaccijeva števila, kombinatorika, filotaksa, zlati rez.
Place of publishing:Maribor
Publisher:[S. Toplak]
Year of publishing:2009
PID:20.500.12556/DKUM-10417 New window
UDC:51(043.2)
COBISS.SI-ID:16864776 New window
NUK URN:URN:SI:UM:DK:CB0HHLWY
Publication date in DKUM:22.05.2009
Views:4515
Downloads:376
Metadata:XML DC-XML DC-RDF
Categories:FNM
:
TOPLAK, Stanislava, 2009, FIBONACCIJEVA ŠTEVILA [online]. Bachelor’s thesis. Maribor : S. Toplak. [Accessed 23 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=10417
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Title:FIBONACCI NUMBERS
Abstract: The Fibonacci numbers are defined by F0 = 0, F1 = 1 and for n≥2, Fn = F(n-1) + F(n-2). They have a long and rich history. They have served as mathematical inspiration and amusement since Leonardo Pisano first posed his original rabbit reproduction question at the beginning of the 13th century. In these Graduation Thesis we present combinatorial approach of proving Fibonacci, Lucas and Gibonacci identities. There are present relationships between golden section and phyllotaxis with Fibonacci numbers .
Keywords:mathematic, Fibonacci numbers, Lucas numbers, Gibonacci numbers, combinatorics, phyllotaxis, golden section.


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica