Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
CELOŠTEVILSKE DOMINACIJSKE INVARIANTE NA GRAFIH
Authors:
ID
Komovec, Luka
(Author)
ID
Brešar, Boštjan
(Mentor)
More about this mentor...
Files:
UNI_Komovec_Luka_2009.pdf
(501,60 KB)
MD5: 7E3466DB81BD1165BCD4DA9A9499F507
PID:
20.500.12556/dkum/fe0fef5d-2538-49d9-a751-d3bb9e7253bc
Language:
Slovenian
Work type:
Undergraduate thesis
Organization:
FNM - Faculty of Natural Sciences and Mathematics
Abstract:
Naj bo Y podmnožica množice celih števil in G = (V,,E) graf. Funkcija, ki vsakemu vozlišču priredi neko vrednost iz množice Y, tako da je seštevek vrednosti v soseščini vsakega vozlišča vsaj 1, se imenuje celoštevilska dominacijska funkcija grafa G. Vrednost celoštevilske dominacijske funkcije v poljubni podmnožici S množice V definiramo kot seštevek vrednosti v vsakem vozlišču iz S. Teža celoštevilske dominacijske funkcije je vrednost funkcije v množici vozlišč V. Poiskati želimo po teži najmanjšo celoštevilsko dominacijsko funkcijo grafa G. V tem delu so predstavljene variacije različnih celoštevilskih dominacij, kot so {k}-dominacija, k-kratna dominacija, predznačena dominacija in minus dominacija, ki jih obravnavamo na razredih grafov kot so poti, cikli, pahljače, kolesa, ponve in trampolini. Podan je algoritem, ki v linearnem času reši problem L-dominacije na strogo tetivnih grafih. Prav tako je podana časovna zahtevnost izračuna naštetih celoštevilskih dominacijskih invariant za razrede dualno tetivnih, dvojno tetivnih in ravninskih grafov. Na koncu je na podoben način predstavljena 2-mavrična dominacija.
Keywords:
celoštevilska dominacija
,
k-kratna dominacija
,
predznačena dominacija
,
minus dominacija
,
{k}-dominacija
,
2-mavrična dominacija
,
tetivni grafi
,
dualno tetivni grafi
,
dvojno tetivni grafi
,
strogo tetivni grafi
Place of publishing:
Maribor
Publisher:
[L. Komovec]
Year of publishing:
2009
PID:
20.500.12556/DKUM-10406
UDC:
51(043.2)
COBISS.SI-ID:
16946440
NUK URN:
URN:SI:UM:DK:ZWDXKEUX
Publication date in DKUM:
17.06.2009
Views:
2582
Downloads:
205
Metadata:
Categories:
FNM
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
KOMOVEC, Luka, 2009,
CELOŠTEVILSKE DOMINACIJSKE INVARIANTE NA GRAFIH
[online]. Bachelor’s thesis. Maribor : L. Komovec. [Accessed 23 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=10406
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Naloge za Matematiko 3
Naloge za Matematiko 3
Uporaba matematičnih metod v logistiki 2
Optimizacija z rojem delavcev
Naloge iz kolokvijev Matematike 1
Similar works from other repositories:
An introduction to graph theory
Networks, topology and dynamics
Math 568 - Linear Algebra
Proklova hipopeda
Dejnostratova kvadratrisa
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
INTEGER DOMINATION INVARIANTS ON GRAPHS
Abstract:
Let Y be a set of integers. An integer dominating function of graph G = (V,,E) is a function that sets a value from Y to every vertex from V in such way that sum of values from neighbourhood of every vertex is at least 1. Let S be a subset of V. The value of an integer dominating function in S is defined as the sum of its values over vertices from S. The weight of integer dominating function is its value in V. The goal is to find a minimum weight integer dominating function of graph G. In this work we present the variation of integer domination such as {k}-domination, k-tuple domination, signed domination, and minus domination numbers which we study on classes of graphs such as paths, cycles, fans, wheels, pans and suns. We give the algorithm that solves L-domination in linear time on strongly chordal graphs. We also give complexity results for the mentioned integer domination invariants on dually chordal, doubly chordal, and planar graphs. At the end a 2-rainbow domination is presented in a similar way.
Keywords:
integer domination
,
k-tuple domination
,
signed domination
,
minus domination
,
{k}-domination
,
2-rainbow domination
,
chordal graphs
,
dually chordal graphs
,
doubly chordal graphs
,
strongly chordal graphs
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back