Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
NUMERIČNO MODELIRANJE TOKA MIKROPOLARNIH TEKOČIN Z METODO ROBNIH ELEMENTOV
Authors:
ID
Zadravec, Matej
(Author)
ID
Hriberšek, Matjaž
(Mentor)
More about this mentor...
ID
Škerget, Leopold
(Comentor)
Files:
DR_Zadravec_Matej_2009.pdf
(3,55 MB)
MD5: 487822C22266E89900C7DBA7A96355F2
PID:
20.500.12556/dkum/91d20c82-3f65-41f6-8de0-0c9b084c40fe
Language:
Slovenian
Work type:
Dissertation
Organization:
FS - Faculty of Mechanical Engineering
Abstract:
V delu je predstavljen nov pristop k numeričnemu modeliranju tokov mikropolarnih tekočin z metodo robnih elementov. Sama teorija mikropolarnih tekočin zajema določene reološko kompleksne tekočine, pri katerih je prisoten še mehanizem rotacije notranjih struktur toka tekočine, kar ni zajeto v klasičnem sistemu Navier-Stokesovih enačb. V nalogi je predstavljeno reševanje toka tekočine s pomočjo teorije mikropolarnih tekočin, izvedeno z vključitvijo dodatnih členov v prenosno enačbo gibalne količine in reševanjem dodatne prenosne enačbe za mikrorotacijo v okviru sistema enačb, zapisanih v hitrostno vrtinčni formulaciji. Predstavljena je izpeljava vodilnih enačb, od začetnih zakonov ohranitve, zapisanih v obliki parcialno diferencalnih enačb, do integralske in na koncu diskretizirane oblike enačb za reševanje toka mikropolarnih tekočin z metodo robnih elementov. Sledi predstavitev numeričnega algoritma reševanja diskretiziranih enačb. Izpeljani algoritem, temelječ na že obstoječem algoritmu reševanja tokov z uporabo klasičnih Navier-Stokesovih enačb, je preizkušen na primerih naravne konvekcije v kotanji, prisilne konvekcije toka tekočine v kanalu ter primeru mešane konvekcije v kotanji z izvorom toplote. Primerjava rezultatov, dobljenih s pomočjo novo razvitega numeričnega algoritma, z referenčnimi rezultati drugih avtorjev, kaže na uspešnost vključitve teorije mikropolarnih tekočin v numerični algoritem na osnovi metode robnih elementov za reševanje toka tekočine s pomočjo klasične teorije Navier-Stokesovih enačb. Teoretične izpeljave in numerične simulacije podrobno obravnavajo izvor in pomen novih modelnih parametrov, ki jih vpeljemo v teoriji mikropolarnih tekočin. Rezultati izvedenih numeričnih simulacij kažejo na pomembno občutljivost tokovnega kot tudi temperaturnega polja na različne vplivne parametre mikropolarnih tekočin. Izpeljani numerični algoritem tako pomembno širi uporabnost metod računalniške dinamike tekočin na osnovi metode robnih elementov tudi na področje numerične simulacije toka mikropolarnih tekočin.
Keywords:
Mikropolarne tekočine
,
robno območna integralska metoda
,
metoda robnih elementov
,
hitrostno vrtinčna formulacija
,
naravna konvekcija
,
tok v kanalu
,
mešana konvekcija.
Place of publishing:
Maribor
Publisher:
M. Zadravec]
Year of publishing:
2009
PID:
20.500.12556/DKUM-10085
UDC:
519.87:532.543:519.64(043.3)
COBISS.SI-ID:
245242112
NUK URN:
URN:SI:UM:DK:GJ3S4DQU
Publication date in DKUM:
06.04.2009
Views:
4545
Downloads:
530
Metadata:
Categories:
KTFMB - FS
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ZADRAVEC, Matej, 2009,
NUMERIČNO MODELIRANJE TOKA MIKROPOLARNIH TEKOČIN Z METODO ROBNIH ELEMENTOV
[online]. Doctoral dissertation. Maribor : M. Zadravec. [Accessed 1 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=10085
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Uporaba programa COSMOS/Designer I za načrtovanje in računanje konstrukcij
Računanje kostrukcij s programom DesignSTAR 2.1
Računanje torzijskih vztrajnostnih momentov poljubnih prečnih prerezov
Elastostatična analiza nosilne konstrukcije kontejnerja po MKE
Statično nedoločene konstrukcije v ravnini
Similar works from other repositories:
Adaptive modeling of plate structures
Fatality risk and its application to the seismic performance assessment of a building
Recent advances in the research of the seismic response of RC precast buildings at the University of Ljubljana
Tension strength capacity of finger joined beech lamellas
Podjetniške povezave v gradbeništvu
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
NUMERICAL MODELLING OF MICROPOLAR FLUID FLOW WITH BOUNDARY ELEMENT METHOD
Abstract:
In this work the new approach for numerical modeling of a micropolar fluid flow based on a boundary element method is presented. Micropolar fluid flow theory is describing flow of a rheological very complex fluids with structures, which have own rotation. Such a physical behaviour of a fluid is not included in the classical system of Navier-Stokes equations. To simulate micropolar fluid flow with the existing boundary element method based code, additional terms have to be included in the vorticity transport equation together with additional transport equation for microrotation, closing the set of governing equation, written in velocity vorticity formulation. In this work the governing equations of micropolar fluid are derived in differential, integral and discretised form, resulting from the application of the boundary element method. In deriving the numerical algorithm, the domain terms are discretised by means of subdomain technique. The derived numerical algorithm, which presents extension of existing numerical algorithm based on the classical Navier-Stokes equations, is verified through the examples of natural convection in a cavity, flow in a channel and mixed convection of micropolar fluid in a cavity. Computational results for micropolar fluids, obtained by the new numerical algorithm, show good agreement with results of other authors, confirmaing successful implementation of micropolar fluid flow theory into existing boundary element method based numerical algorithm for numerical modeling of flows with use of classical theory of Navier-Stokes equations. Through the work the meaning and importance of new model parameters included in the micropolar fluid flow theory is discused. The results of performed numerical simulations of the micropolar fluid flow show that one can expect significant sensitivity of flow and temperature fields on different micropolar fluid flow parameters. The derived numerical algorithm presents extension of the use of computational fluid dynamics methods based on boundary element method to the field of numerical simulations of micropolar fluids.
Keywords:
Micropolar fluids
,
boundary domain integral method
,
boundary element method
,
velocity vorticity formulation
,
natural convection
,
flow in a channel
,
mixed convection.
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back