Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
MATEMATIČNO PROGRAMIRANJE IN TRG ELEKTRIČNE ENERGIJE
Authors:
ID
Bračič, Mojca
(Author)
ID
Bokal, Drago
(Mentor)
More about this mentor...
Files:
UNI_Bracic_Mojca_2009.pdf
(878,55 KB)
MD5: CA2A440948F9EE6C6F256FFAD675E6B2
PID:
20.500.12556/dkum/a503083e-c00c-4cda-91c7-f64a7a8be2d5
Language:
Slovenian
Work type:
Undergraduate thesis
Organization:
FNM - Faculty of Natural Sciences and Mathematics
Abstract:
V tem diplomskem delu je predstavljena osnovna teorija matematičnih programov. V začetnem delu so zajeti predvsem pojmi in izreki v povezavi s konveksnimi in konkavnimi funkcijami na konveksni množici, ki vodijo do pomembnih ugotovitev, povezanih z lokalnimi in globalnimi ekstremi. Ti izreki so pomembni v matematičnem programiranju, saj nam ob določenih posebnih predpostavkah, kot sta konveksnost in linearnost, omogočajo preprostejše načine iskanja optimalne rešitve danega programa. Kot pomemben primer matematičnega programiranja je predstavljen linearen program in njegov dual. Opisan je postopek pretvorbe linearnega programa v dualni program in izrek o dualnosti, ki pravi, da imata primarni in dualni program enaki optimalni vrednosti kriterijske funkcije, če optimalna rešitev obstaja. Prav tako je opisana ekonomska vloga dualnih spremenljivk in z njimi povezane senčne cene. Predstavljeni so Kuhn-Tuckerjevi pogoji za optimalnost rešitve matematičnega programa, ki so potrebni pogoji za lokalni ekstrem in pri posebnih predpostavkah zadostni pogoji za globalni ekstrem. V drugem delu sledi kratka predstavitev trga električne energije in njegovih udeležencev. Predstavljeni so modeli proizvajalcev, odjemalcev, trgovcev in borza električne energije. Pomembni vprašanji, s katerima se proizvajalci, odjemalci in trgovci soočajo, sta, koliko energije kupiti (prodati) preko dvostranskih pogodb in koliko preko borze električne energije. Običajno se za daljše obdobje udeleženci odločijo za dvostranske pogodbe, ki zagotavljajo zadostno količino električne energije po nespremenjenih cenah, kar pa nujno ne prinaša maksimalnega dobička. V primerih povečanega povpraševanja oz. padca cen električne energije, pa se zatekajo k nakupu na organiziranem trgu. Opisani so matematični programi, ki maksimirajo dobiček posameznih udeležencev, glede na dane omejitve.
Keywords:
matematično programiranje
,
linearno programiranje
,
dualni program
,
Kuhn-Tuckerjevi pogoji
,
senčne cene
,
elektroenergetski trg
Place of publishing:
Maribor
Publisher:
[M. Bračič]
Year of publishing:
2009
PID:
20.500.12556/DKUM-10072
UDC:
51(043.2)
COBISS.SI-ID:
16809992
NUK URN:
URN:SI:UM:DK:3PQS7YL0
Publication date in DKUM:
22.04.2009
Views:
3666
Downloads:
455
Metadata:
Categories:
FNM
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
BRAČIČ, Mojca, 2009,
MATEMATIČNO PROGRAMIRANJE IN TRG ELEKTRIČNE ENERGIJE
[online]. Bachelor’s thesis. Maribor : M. Bračič. [Accessed 31 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=10072
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Kakovost življenja pacienta z rakom trebušne slinavke
Kakovost življenja pacienta z globoko možgansko stimulacijo
Kakovost življenja pacienta s Crohnovo boleznijo
Kakovost življenja pacienta z inzulinsko črpalko
Vpliv bioloških zdravil na kakovost življenja pacientov z luskavico
Similar works from other repositories:
Kakovost življenja pacienta z okvaro hrbtenjače
Vpliv bolezni na kakovost življenja pacientov z epilepsijo
Kakovost življenja pacientov z izločalno stomo in vloga medicinske sestre
Kakovost življenja pacientov s črevesno stomo
Smernice za zdravljenje bolnikov z rakom požiralnika in ezofagogastričnega stika (EGS)
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
MATHEMATICAL PROGRAMMING AND ELECTRICITY MARKETS
Abstract:
In this diploma thesis, we present a theoretical basis of mathematical programming. At the beginning, we describe notation and theorems related to convex and concave functions on convex sets, which is the basis of important results about local and global extremes. These theorems are important in mathematical programming, because they allow for more efficient methods of finding the optimal solution of a mathematical program, under suitable convexity and linearity assumptions. Next, we present an important basic case of mathematical programming that is linear program and its dual program, including a procedure of how to find the dual of normal linear program and the dual theorem, which says if the optimal value exists, it’s the same for both the primal and the dual program. We also present the economical interpretation of the dual variables as shadow prices. At the end of the theoretical part, we describe the Kuhn-Tucker conditions. These are the necessary conditions for local optimality for a mathematical program. Under suitable restrictions, they are also sufficient conditions for global optimality. In the second part of this diploma thesis, we continue with a short presentation of electricity markets and their participants. We describe the viewpoints of the main participants including producers, consumers, energy service companies, and a pool operator. A decision problem that we investigate is how much energy to buy (sell) with bilateral contracts and how much energy to buy from or sell in the power pool. It turns out that participants decide on bilateral contracts in longer terms, because of their reliability and fixed price in advance, but this does not necessarly give the maximal profit. In case of lower prices in the power pool and increased demand for electrical energy, the participants decide to buy energy from or sell it in the pool. According to this, we describe mathematical programs that maximize profits for all participants under certain constraints.
Keywords:
Mathematical programming
,
linear programming
,
shadow price
,
dual problem
,
electricity market
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back