| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Učinkovitost algoritmov umetne inteligence pri mikroplaniranju proizvodnje
Authors:ID Radisavljević, Vukašin (Author)
ID Roblek, Matjaž (Mentor) More about this mentor... New window
ID Brezavšček, Alenka (Comentor)
Files:.pdf UN_Radisavljevic_Vukasin_2024.pdf (4,53 MB)
MD5: 32C08AFA8C32197A097BA25F0373E4D9
 
Language:Slovenian
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FOV - Faculty of Organizational Sciences in Kranj
Abstract:Diplomsko delo se osredotoča na analizo podatkov v kontekstu uporabe umetne inteligence pri mikroplaniranju proizvodnje. Na podlagi analize pridobljenih podatkov smo identificirali zakonitosti in trende, ki se nanašajo na učinkovitost sistema za napredno planiranje in razporejanje proizvodnje z umetno inteligenco Qlector LEAP. Opažamo korelacije med relativno napako planiranja s Qlector LEAP-om in številom poskusov planiranja, pri čemer opažamo določene trende za določene izdelke. Primerjamo učinek planiranja Qlector LEAP-a tudi z učinkom planiranja po normativih. Razprava se osredotoča tudi na tehnološke, kadrovske in organizacijske dejavnike ter priporoča organizacijske ukrepe za izboljšanje učinkovitosti planiranja z LEAP-om. Kljub izzivom pri dokazovanju hipotez je razprava pokazala možnosti za nadaljnje raziskave, ki vključujejo kvantifikacijo zanesljivosti planiranja z LEAP-om in preučevanje drugih modulov Qlector LEAP-a. Skupaj s postavljenimi organizacijskimi ukrepi diplomsko delo zagotavlja osnovo za nadaljnje raziskave na tem področju.
Keywords:umetna inteligenca, strojno učenje, mikroplaniranje proizvodnje, sistem za napredno planiranje in razporejanje proizvodnje, merjenje učinka
Place of publishing:Kranj
Year of publishing:2024
PID:20.500.12556/DKUM-88599 New window
COBISS.SI-ID:198758915 New window
Publication date in DKUM:13.06.2024
Views:189
Downloads:28
Metadata:XML DC-XML DC-RDF
Categories:FOV
:
RADISAVLJEVIĆ, Vukašin, 2024, Učinkovitost algoritmov umetne inteligence pri mikroplaniranju proizvodnje [online]. Bachelor’s thesis. Kranj. [Accessed 20 January 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=88599
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Searching for similar works...Please wait....
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:15.05.2024

Secondary language

Language:English
Title:Performance of ai algorithms in production scheduling
Abstract:The thesis focuses on data analysis in the context of artificial intelligence usage in production scheduling. Based on the analysis of the acquired data, we identified patterns and trends related to the effectiveness of the APS system with artificial intelligence (Qlector LEAP). We observe correlations between the relative planning error with Qlector LEAP and the number of planning attempts, where we notice certain trends for specific products. Additionally, we compare the planning efficiency of Qlector LEAP with the efficiency of planning based on normative times. The discussion also emphasizes technological, personnel, and organizational factors, recommending organizational measures to improve planning efficiency with LEAP. Despite challenges in proving hypotheses, the discussion has shown possibilities for further research, including quantifying the reliability of planning with LEAP and examining other Qlector LEAP modules. Together with the proposed organizational measures, the thesis provides a solid foundation for further research in this field.
Keywords:artificial inteligence, machine learning, production scheduling, APS system, performance assesment


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica