| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Izpis gradiva Pomoč

Naslov:Optimizing smart manufacturing systems using digital twin
Avtorji:ID Ojsteršek, Robert (Avtor)
ID Javernik, Aljaž (Avtor)
ID Buchmeister, Borut (Avtor)
Datoteke:.pdf APEM18-4_475-485.pdf (1,28 MB)
MD5: DA91EF25DC6CAD0BDD3E6671131509F2
 
URL https://apem-journal.org/Archives/2023/Abstract-APEM18-4_475-485.html
 
Jezik:Angleški jezik
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Opis:Presented paper investigates the application of digital twins for the optimisation of intelligent manufacturing systems and focuses on the comparison between simulation modelling results and real-world production conditions. A digital twin was created in the Simio software environment using a data-driven simulation model derived from a real-world production system. Running the digital twin in real time, which was displayed graphically, facilitated the analysis of key parameters, including the number of finished products, average flow time, workstation utilization and product quality. The discrepancies were attributed to the use of random distributions of input data in the dynamic digital twin, as opposed to the long-term measurements and averages in the real-world system. Despite the limitations in the case study, the results underline the financial justification and predictive capabilities of digital twins for optimising production systems. Real-time operation enables continuous evaluation and tracking of parameters and offers high benefits for intelligent production systems. The study emphasises the importance of accurate selection of input data and warns that even small deviations can lead to inaccurate results. Finally, the paper high-lights the role of digital twins in optimising production systems and argues for careful consideration of input data. It highlights the importance of analysing real-world production systems and creating efficient simulation models as a basis for digital twin solutions. The results encourage extending the research to different types of production, from job shop to mass production, in order to obtain a comprehensive optimisation perspective.
Ključne besede:smart manufacturing, digital twin, optimisation, simulation modelling, Simio, case study
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Poslano v recenzijo:19.07.2023
Datum sprejetja članka:20.12.2023
Datum objave:28.12.2023
Založnik:Chair of Production Engineering (CPE), University of Maribor, Faculty of Mechanical Engineering
Leto izida:2023
Št. strani:str. 475-485
Številčenje:Vol. 18, no. 4
PID:20.500.12556/DKUM-87708 Novo okno
UDK:658.5:004.94
COBISS.SI-ID:182000131 Novo okno
DOI:10.14743/apem2023.4.486 Novo okno
ISSN pri članku:1854-6250
Datum objave v DKUM:25.03.2024
Število ogledov:277
Število prenosov:25
Metapodatki:XML DC-XML DC-RDF
Področja:Ostalo
:
OJSTERŠEK, Robert, JAVERNIK, Aljaž in BUCHMEISTER, Borut, 2023, Optimizing smart manufacturing systems using digital twin. Advances in production engineering & management [na spletu]. 2023. Vol. 18, no. 4, p. 475–485. [Dostopano 19 april 2025]. DOI 10.14743/apem2023.4.486. Pridobljeno s: https://dk.um.si/IzpisGradiva.php?lang=slv&id=87708
Kopiraj citat
  
Skupna ocena:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Advances in production engineering & management
Skrajšan naslov:Adv produc engineer manag
Založnik:Fakulteta za strojništvo, Inštitut za proizvodno strojništvo
ISSN:1854-6250
COBISS.SI-ID:229859072 Novo okno

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0190
Naslov:Napredni koncepti menedžmenta proizvodnje in dimenzionalnega meroslovja

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:pametna proizvodnja, simulacijsko modeliranje, digitalni dvojček, optimizacija, študija primera


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici