Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Identifikacija žensk za visokorizičen izvid po konizaciji z uporabo nevronskih mrež
Authors:
ID
Mlinarič, Marko
(Author)
ID
Takač, Iztok
(Mentor)
More about this mentor...
ID
Repše Fokter, Alenka
(Comentor)
Files:
DOK_Mlinaric_Marko_2023.pdf
(4,12 MB)
MD5: E7487FD96FEE84BD3590A3D1BD0E73B6
Language:
Slovenian
Work type:
Doctoral dissertation
Typology:
2.08 - Doctoral Dissertation
Organization:
MF - Faculty of Medicine
Abstract:
Na svetu je rak materničnega vratu (RMV) četrti najpogostejši rak pri ženskah. V Sloveniji je bil pri ženskah leta 2017 na sedemnajstem mestu. Z ustreznim presejanjem, zgodnjim odkrivanjem predrakavih sprememb in njihovim zdravljenjem, ga je mogoče preprečiti. Metode umetne inteligence ('artificial intelligence – AI') bi lahko postale orodje, ki bi pripomoglo k rešitvi problema RMV. Z našo študijo smo želeli preveriti, ali lahko z umetnimi nevronskimi mrežami na podlagi dejavnikov tveganja za razvoj ploščatocelične intraepitelijske lezije (PIL) na materničnem vratu (MV) in RMV ter izvida zadnjega brisa materničnega vratu (BMV) napovemo, ali bo končni histološki izvid konusa PIL visoke stopnje (PIL-VS) oziroma RMV ali ne. Poleg nevronskih mrež smo preizkusili tudi nekatere druge klasifikacijske sisteme. Za analizo smo uporabili podatke 1475 pacientk, ki so imele narejeno konizacijo na Kliniki za ginekologijo in perinatologijo Univerzitetnega kliničnega centra Maribor v letih 1993–2005. Vse podatke smo anonimizirali. Uporabili smo metode za uravnoteženje manjšinskega in večinskega razreda. Za analizo smo oblikovali več baz, izvedli pa smo jo z odprtokodnim programskim paketom za podatkovno rudarjenje WEKA. Nevronske mreže so bile uspešnejše pri napovedovanju tveganih pacientk kot večinski algoritem. V naši študiji se je klasifikacijski algoritem Random Forest s sestavljeno metodo 'bagging' izkazal kot najuspešnejši in bi bil primeren za klinično uporabo.
Keywords:
rak materničnega vratu
,
ploščatocelična intraepitelijska lezija visoke stopnje
,
umetna inteligenca
,
umetne nevronske mreže
,
napovedovanje tveganja
Place of publishing:
Maribor
Year of publishing:
2023
PID:
20.500.12556/DKUM-82180
COBISS.SI-ID:
162081283
Publication date in DKUM:
24.08.2023
Views:
456
Downloads:
40
Metadata:
Categories:
MF
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
MLINARIČ, Marko, 2023,
Identifikacija žensk za visokorizičen izvid po konizaciji z uporabo nevronskih mrež
[online]. Doctoral dissertation. Maribor. [Accessed 13 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=82180
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Analiza in izračun sinhronskega motorja s trajnimi magneti na cilindričnem rotorju
Analiza magnetnih sklepov sinhronskega motorja s trajnimi magneti
Računalniška meritev sinhronskih motorjev s trajnimi magneti (SMPM)
Vodenje sinhronskega motorja s Hallovim dajalnikom
Analiza sinhronskega reluktančnega motorja s trajnimi magneti
Similar works from other repositories:
Aktivno zmanjševanje valovitosti navora sinhronskega motorja s trajnimi magneti
Izboljšan dinamični model sinhronskega motorja s trajnimi magneti
Minimizacija nihanja vrtilnega momenta sinhronskega motorja s trajnimi magneti
Dinamični simulacijski model kolesnega električnega pogona
Razvoj računalniškega orodja za elektromagnetno analizo sinhronskih motorjev s trajnimi magneti
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:
26.07.2022
Secondary language
Language:
English
Title:
Identification of women with high risk histopatology after conisation by neural networks
Abstract:
Cervical cancer is the fourth most common cancer in women globally. In Slovenia, it was the seventeenth most common cancer in women in 2017. Cervical cancer can be prevented with early detection and treatment of precancerous lesions. Artificial intelligence (AI), therefore, has the potential to be an important tool for eliminating the problem of cervical cancer. The aim of our study was to evaluate if artificial neural networks (ANN) can identify women who have high-grade final histopathology of the cone only on the basis of known risk factors for the development of cervical squamous intraepithelial lesion (SIL) and cancer, and last PAP smear result. Other classification algorithms were also tested. Data from 1475 patients who had conization at the Clinic for gynaecology and perinatology of University Clinical Centre Maribor from 1993-2005 was used for analysis. Data was anonymized. Methods to deal with imbalanced classes were used. Multiple databases were constructed for analysis with WEKA open-source program for data mining. Neural networks outperformed the majority algorithm in predicting high-risk patients. In our study, Random Forest algorithm with bagging method proved to be the best algorithm for the task and is suitable for clinical use.
Keywords:
cervical cancer
,
high-grade squamous intraepithelial lesion
,
artificial intelligence
,
neural network
,
forecasting
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back