| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Platforma Raspberry Pi kot avtokamera in senzor vsebnosti alkohola v izdihanem zraku : diplomsko delo
Authors:ID Vidovič, Urban (Author)
ID Holobar, Aleš (Mentor) More about this mentor... New window
Files:.pdf UN_Vidovic_Urban_2020.pdf (1,81 MB)
MD5: B941DD3253F42A2486A7D9581342F3F6
PID: 20.500.12556/dkum/c50de1cd-f17f-4926-914b-97272f646066
 
Language:Slovenian
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:Namen diplomskega dela je bil dokazati, da lahko z nekaj denarja, znanja in časa ustvarimo svoj majhen sistem IoT, ki nudi snemanje vožnje in dokazovanje voznikove prisebnosti, nalaganje posnetka v oblak, ogled posnetkov in upravljanje z njimi. Najprej smo opisali uporabljeno tehnologijo in strojno opremo, zasnovo infrastrukture sistema, nato pa implementacijo. Sistem delimo na tri dele: odjemalca, spletno stran in vmesnik API. Vmesnik API in spletna stran sta ustvarjena z ogrodjem Node.js, odjemalec pa je napisan v programskem jeziku Python. Odjemalec izmeri vsebnost alkohola v izdihanem zraku in tako potrdi, da voznik ni pod vplivom alkohola. Nato posname vožnjo in ob povezavi na znano, zaupanja vredno omrežje posnetek naloži v oblak. Vmesnik API skrbi za komunikacijo med odjemalcem in spletno stranjo ter upravlja s podatkovno bazo. Spletna stran omogoča uporabniku registracijo in prijavo ter pregled in brisanje videoposnetkov.
Keywords:Raspberry Pi, avtokamera, senzor MQ3, internet stvari
Place of publishing:Maribor
Place of performance:Maribor
Publisher:[U. Vidovič]
Year of publishing:2020
Number of pages:VIII, 48 str.
PID:20.500.12556/DKUM-77417 New window
UDC:004.777(043.2)
COBISS.SI-ID:43134979 New window
NUK URN:URN:SI:UM:DK:CA7RYA12
Publication date in DKUM:03.11.2020
Views:874
Downloads:145
Metadata:XML DC-XML DC-RDF
Categories:KTFMB - FERI
:
VIDOVIČ, Urban, 2020, Platforma Raspberry Pi kot avtokamera in senzor vsebnosti alkohola v izdihanem zraku : diplomsko delo [online]. Bachelor’s thesis. Maribor : U. Vidovič. [Accessed 22 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=77417
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Searching for similar works...Please wait....
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:30.08.2020

Secondary language

Language:English
Title:Platform Raspberry Pi as dashcam and breathalyzer
Abstract:The main goal of our work was to prove that with some money, knowledge and time, we can develop our own little IoT system, which acts as a dashcam and at the same time shows that we are not driving under the influence of alcohol. It is also capable of uploading the dashcam video to the cloud as soon as it connects to the internet via a secure network. Users can also watch and delete their dashcam videos on a web application. First, we described the technology and hardware, which was used for the development, the infrastructure of our system and the implementation itself. The system is divided into three parts: the client, the website, and the API. The webpage and the API are created with Node.js, whereas the client is written in Python. Client measures the alcohol concentration in the air and therefore confirms that the driver is not under the influence of alcohol. After that it starts recording the ride. When the ride is over and the client connects to the internet, the video is uploaded to the cloud. API handles all the communication between the client, website, and database. The website is used to watch and delete uploaded videos, for which a user must have an active account.
Keywords:Raspberry Pi, dashcam, MQ3 sensor, Internet of Things


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica