Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Kam postaviti oznako večkotnika?
Authors:
ID
Božič, Aljaž
(Author)
ID
Hvala, Bojan
(Mentor)
More about this mentor...
Files:
MAG_Bozic_Aljaz_2018.pdf
(2,60 MB)
MD5: E0F8ECBF4CF3C2A18CDA437C2CEE02D0
PID:
20.500.12556/dkum/c8d41740-7535-45b0-ac66-5bca7450cf57
Language:
Slovenian
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FNM - Faculty of Natural Sciences and Mathematics
Abstract:
V magistrskem delu se najprej seznanimo s trilinearnimi in baricentričnimi koordinatami. Nato spoznamo izotomično in izogonalno transformacijo. Po uvodnih pojmih je podrobneje opisan problem, ki ga rešujemo postopoma. Začnemo z najenostavnejšimi liki, katerih geometrijo dokaj dobro poznamo. Pri iskanju točke, ki bi bila primerna za postavitev oznake večkotnika, naletimo na ogromno kandidatov, vendar se izkaže, da jih ima večina določene pomanjkljivosti. Po opisanem postopku iskanja primerne točke in nekaj primerih se zopet vrnemo k trikotniku saj določimo algoritem, ki nas za poljubni večkotnik pripelje do točke, kjer moramo poiskati primerno točko ravno v trikotniku. Tu se srečamo s trikotniku včrtanimi elipsami in najbolj značilne tudi opišemo. Posebej obravnavamo tudi Lemoinovo elipso in Spiekerjevo točko, kar je tudi rešitev našega problema.
Keywords:
vzporedni večkotnik
,
Spiekerjeva točka
,
Lemoinova elipsa
,
trilinearne koordinate
,
baricentrične koordinate
,
včrtana elipsa
,
izotomična transformacija
,
izogonalna transformacija
,
Nagelova točka
,
Gergonnova točka
Place of publishing:
Maribor
Publisher:
[A. Božič]
Year of publishing:
2018
PID:
20.500.12556/DKUM-69620
UDC:
514.12(043.2)
COBISS.SI-ID:
23696904
NUK URN:
URN:SI:UM:DK:Z0SV9T6K
Publication date in DKUM:
09.03.2018
Views:
1475
Downloads:
130
Metadata:
Categories:
FNM
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
BOŽIČ, Aljaž, 2018,
Kam postaviti oznako večkotnika?
[online]. Master’s thesis. Maribor : A. Božič. [Accessed 13 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=69620
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Modeliranje in dimenzioniranje armiranobetonskih T nosilcev
Vrivanje armiranobetonskih konstrukcij
Sodoben betonski nebotičnik
Sovprežni cestni most razpona 70 m
Mejno stanje uporabnosti armiranobetonskih konstrukcij
Similar works from other repositories:
Dimenzioniranje nosilne konstrukcije prednapetega betonskega mostu čez reko Sotlo
Analytical integration of stress field and tangent material moduli over concrete cross-sections
Geometrijsko točna dinamična analiza elastičnih in armiranobetonskih okvirnih konstrukcij
Non-linear fire-resistance analysis of reinforced concrete beams
Statična in požarna analiza lesenega večetažnega objekta v Novem mestu
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:
11.02.2018
Secondary language
Language:
English
Title:
Where should the label for a polygon be placed?
Abstract:
In the following master thesis we first learn about trilinears, barycentrics. Then we describe isotomic and isogonal conjugate. After describing the main problem, we start searching for the most optimal place for placing laber for a polygon. We start with triangle and quadrilateral and we find out, that a lot of possible candidates (points) have some imperfections. According to the procedure described for a suitable point and some examples, we return to the triangle again since we define an algorithm that leads us to conclusion that a point for placing a label for general polygon is a point in triangle which we get as result of algorithm. We consider ellipses inscribed in the triangle and some triangle centres related to these ellipses. At the end we show results related to Lemoine ellipse and Spieker centre, which are closely connected with the final step of the solution to our problem.
Keywords:
the centre of a polygon
,
parallel polygon
,
Spieker centre
,
Lemoine ellipse
,
trilinears
,
barycentrics
,
inscribed ellipse
,
izotomic conjugate
,
isogonal conjugate
,
Nagel point
,
Gergonne point
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back