Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
OPTIMIZACIJA Z ROJEM DELCEV ZA IZBIRO ATRIBUTOV PRI KLASIFIKACIJI
Authors:
ID
Brezočnik, Lucija
(Author)
ID
Podgorelec, Vili
(Mentor)
More about this mentor...
Files:
MAG_Brezocnik_Lucija_2016.pdf
(10,64 MB)
MD5: 24E9F4AF0CD76848543CC683D5ADA9FA
Language:
Slovenian
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
V magistrskem delu smo razvili metodo FS-BPSO, ki združuje postopek izbire atributov z algoritmom optimizacije z rojem delcev. Glavni namen te metode je njena uporabnost pri reševanju naslednjega dobro znanega problema. Ko so v podatkovni množici primerki z ogromnim številom atributov, je med njimi težko najti tiste, ki so najbolj informativni oziroma reprezentativni. Tega problema smo se lotili s predlaganim hibridnim algoritmom binarne optimizacije z rojem delcev v kombinaciji s klasifikacijskimi metodami C4.5, Naive Bayes in SVM v cenitveni funkciji za izbiro informativnih atributov. Dobljeni rezultati so statistično analizirani in razkrivajo, da predlagani hibridni algoritem prekaša znane klasifikacijske metode C4.5, Naive Bayes in SVM.
Keywords:
računalniška inteligenca
,
optimizacija z rojem delcev
,
metoda izbire atributov
,
klasifikacija
Place of publishing:
[Maribor
Publisher:
L. Brezočnik
Year of publishing:
2016
PID:
20.500.12556/DKUM-61656
UDC:
004.89(043.2)
COBISS.SI-ID:
20148502
NUK URN:
URN:SI:UM:DK:NOXHVA9K
Publication date in DKUM:
06.09.2016
Views:
1736
Downloads:
275
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
BREZOČNIK, Lucija, 2016,
OPTIMIZACIJA Z ROJEM DELCEV ZA IZBIRO ATRIBUTOV PRI KLASIFIKACIJI
[online]. Master’s thesis. Maribor : L. Brezočnik. [Accessed 26 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=61656
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Deactivation of a steam reformer catalyst in chemical looping hydrogen systems
Catalytic methane halogenation by bromine over microporous SAPO-34 zeolite material towards methyl bromide, dibromomethane and hydrogen bromide
Enhancing the performance of adaptive iterative learning control with reinforcement learning
Similar works from other repositories:
Empirical study on the performance of Neuro Evolution of Augmenting Topologies (NEAT)
The effect of polymer molecular weight on the performance of PTB7-Th
Normiranje gozdnih del pri izvedbi drugega redčenja v spremenjenih gorskih gozdovih na Pohorju
Vpliv vadbe za izboljšanje zmogljivosti mišic spodnjih udov na zmanjšanje bolečine v kolenskem sklepu pri pacientih z artrozo kolena
Vpliv čustvene inteligence na uspešnost zavarovalnega zastopnika
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
PARTICLE SWARM OPTIMIZATION IN FEATURE SELECTION FOR CLASSIFICATION
Abstract:
In this master's thesis, we have developed an FS-BPSO method that joins a feature selection procedure with a particle swarm optimization algorithm. The main purpose of this method is its usability in addressing the following well-known problem: When there are instances with a huge number of attributes in a data set, it is hard to select the most representative ones among them. In order to cope with this problem, we propose the use of a hybrid binary particle swarm optimization algorithm combined with C4.5, Naive Bayes, and SVM as the classifiers in the fitness function for the selection of informative attributes. The results obtained were statistically analysed and revealed that the proposed algorithm outperformed known classifiers, e.g. C4.5, Naive Bayes, and SVM.
Keywords:
computational intelligence
,
particle swarm optimization
,
feature selection
,
classification
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back