Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
MODELIRANJE NAPOVEDI ODJEMA ZEMELJSKEGA PLINA
Authors:
ID
Jaušovec, Igor
(Author)
ID
Kramberger, Iztok
(Mentor)
More about this mentor...
Files:
MAG_Jausovec_Igor_2016.pdf
(4,17 MB)
MD5: 31B4C99E6302E36A1F3615C37543083A
Language:
Slovenian
Work type:
Master's thesis
Typology:
2.09 - Master's Thesis
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
V magistrskem delu smo predstavili modele napovedovanja odjema zemeljskega plina. Te smo v osnovi delili na linearne in nelinearne ter nevronske mreže. Izvedli smo več modelov napovedi ločeno po tipih odjemalcev. S primerjavo modelov smo ugotovili zanesljivost modela. Vsem modelom izračuna napovedi smo preko zajema znanih vhodnih in izhodnih podatkov odjema zemeljskega plina in vremenskih spremenljivk na učnem vzorcu določili uteži in nato validirali izračunano napoved odjema na osnovi znanih vhodnih podatkov. Šele z validiranim modelom smo lahko s pomočjo napovedanih vremenskih spremenljivk napovedali odjem. Napovedan odjem smo po potrebi s korekcijo po dnevu v tednu popravili in ovrednotili uspeh napovedi z znanimi odjemi. Pri izvedbi modela napovedi smo se zavedali, da pojavi v naravi niso linearno odvisni, vendar lahko za vsak pojav v naravi opišemo kot linearno odvisen, če gledamo dovolj majhno območje. Modele napovedi smo preizkusili pri kratkoročnem napovedovanju porabe zemeljskega plina. V nalogi smo si zastavili cilj, da se razvije takšna metoda za napovedovanje, ki bo neodvisno od napake napovedi vremena zanesljiva v vseh dneh v mesecu znotraj stimulirane dovoljene tolerance. Takšno smo tudi izvedli tako, da deluje skoraj popolnoma avtomatično.
Keywords:
regresijska analiza
,
napovedovanje
,
kratkoročno napovedovanje
,
zemeljski plin
Place of publishing:
Maribor
Publisher:
[I. Jaušovec]
Year of publishing:
2016
PID:
20.500.12556/DKUM-57918
UDC:
004.414:665.612(043)
COBISS.SI-ID:
19695894
NUK URN:
URN:SI:UM:DK:FGQYXXZS
Publication date in DKUM:
07.07.2016
Views:
1453
Downloads:
241
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
JAUŠOVEC, Igor, 2016,
MODELIRANJE NAPOVEDI ODJEMA ZEMELJSKEGA PLINA
[online]. Master’s thesis. Maribor : I. Jaušovec. [Accessed 17 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=57918
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Socialni sistem in njegova okolja
Randall Collins: Max Weber, kratek oris
Factors influencing the decision to study nursing
Racionalne podlage religije
THE MOST IMPORTANT SOCIOLOGICAL THEORIES AND THEIR CONTRIBUTION TO CRIMINOLOGY
Similar works from other repositories:
Peter Stankovič: Družbena struktura in človekovo delovanje
Baudrillardov svet ekstaze komunikacij
Stephen P. Turner Brains/Practice/Relativism: social theory after cognitive science
Samomori v prekmurski regiji v obdobju od leta 1990 do leta 1999
Dileme posocialističnega razvoja
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
NATURAL GAS CONSUMPTION FORECAST MODELING
Abstract:
In this master’s thesis we present the models of forecasting natural gas off-take. These are basically divided into linear and nonlinear and neural networks. We carried out several models of forecasts separately by type of customer. By comparing the models we found the reliability of the model. For all models of forecast calculations we used the acquisition of known input and output data of the natural gas off-take and weather variables on the learning sample to determine the weights and then validated the calculated off-take forecast on the basis of known input data. Only the validated model allowed us to predict the off-take through forecasted weather variables. Where appropriate, by correction of the day in week, we corrected the forecasted off-take and evaluated the success of the predictions with known off-takes. In the implementation of the model of prediction we were aware that phenomena in nature are not linearly dependent, however, any phenomenon in nature can be described as a linearly dependent when looking at small enough area. Prediction models were tested in short-term forecasting of natural gas off-take. In the thesis we have set ourselves the goal to develop such a method for prediction, which will, independent of the error in forecast, be reliable in all days of the month within stimulated allowed tolerance. This was also performed, so that it operates almost completely automatically.
Keywords:
regression analysis
,
forecast
,
short term forecasting
,
natural gas
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back