| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:MODELIRANJE NAPOVEDI ODJEMA ZEMELJSKEGA PLINA
Authors:ID Jaušovec, Igor (Author)
ID Kramberger, Iztok (Mentor) More about this mentor... New window
Files:.pdf MAG_Jausovec_Igor_2016.pdf (4,17 MB)
MD5: 31B4C99E6302E36A1F3615C37543083A
 
Language:Slovenian
Work type:Master's thesis
Typology:2.09 - Master's Thesis
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:V magistrskem delu smo predstavili modele napovedovanja odjema zemeljskega plina. Te smo v osnovi delili na linearne in nelinearne ter nevronske mreže. Izvedli smo več modelov napovedi ločeno po tipih odjemalcev. S primerjavo modelov smo ugotovili zanesljivost modela. Vsem modelom izračuna napovedi smo preko zajema znanih vhodnih in izhodnih podatkov odjema zemeljskega plina in vremenskih spremenljivk na učnem vzorcu določili uteži in nato validirali izračunano napoved odjema na osnovi znanih vhodnih podatkov. Šele z validiranim modelom smo lahko s pomočjo napovedanih vremenskih spremenljivk napovedali odjem. Napovedan odjem smo po potrebi s korekcijo po dnevu v tednu popravili in ovrednotili uspeh napovedi z znanimi odjemi. Pri izvedbi modela napovedi smo se zavedali, da pojavi v naravi niso linearno odvisni, vendar lahko za vsak pojav v naravi opišemo kot linearno odvisen, če gledamo dovolj majhno območje. Modele napovedi smo preizkusili pri kratkoročnem napovedovanju porabe zemeljskega plina. V nalogi smo si zastavili cilj, da se razvije takšna metoda za napovedovanje, ki bo neodvisno od napake napovedi vremena zanesljiva v vseh dneh v mesecu znotraj stimulirane dovoljene tolerance. Takšno smo tudi izvedli tako, da deluje skoraj popolnoma avtomatično.
Keywords:regresijska analiza, napovedovanje, kratkoročno napovedovanje, zemeljski plin
Place of publishing:Maribor
Publisher:[I. Jaušovec]
Year of publishing:2016
PID:20.500.12556/DKUM-57918 New window
UDC:004.414:665.612(043)
COBISS.SI-ID:19695894 New window
NUK URN:URN:SI:UM:DK:FGQYXXZS
Publication date in DKUM:07.07.2016
Views:1453
Downloads:241
Metadata:XML DC-XML DC-RDF
Categories:KTFMB - FERI
:
JAUŠOVEC, Igor, 2016, MODELIRANJE NAPOVEDI ODJEMA ZEMELJSKEGA PLINA [online]. Master’s thesis. Maribor : I. Jaušovec. [Accessed 17 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=57918
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Title:NATURAL GAS CONSUMPTION FORECAST MODELING
Abstract:In this master’s thesis we present the models of forecasting natural gas off-take. These are basically divided into linear and nonlinear and neural networks. We carried out several models of forecasts separately by type of customer. By comparing the models we found the reliability of the model. For all models of forecast calculations we used the acquisition of known input and output data of the natural gas off-take and weather variables on the learning sample to determine the weights and then validated the calculated off-take forecast on the basis of known input data. Only the validated model allowed us to predict the off-take through forecasted weather variables. Where appropriate, by correction of the day in week, we corrected the forecasted off-take and evaluated the success of the predictions with known off-takes. In the implementation of the model of prediction we were aware that phenomena in nature are not linearly dependent, however, any phenomenon in nature can be described as a linearly dependent when looking at small enough area. Prediction models were tested in short-term forecasting of natural gas off-take. In the thesis we have set ourselves the goal to develop such a method for prediction, which will, independent of the error in forecast, be reliable in all days of the month within stimulated allowed tolerance. This was also performed, so that it operates almost completely automatically.
Keywords:regression analysis, forecast, short term forecasting, natural gas


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica