Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
AVTOMATSKO PREPOZNAVANJE NOSU IZ DIGITALNIH POSNETKOV S POSTOPKI RAČUNALNIŠKEGA VIDA
Authors:
ID
Kotnik, Jadran
(Author)
ID
Potočnik, Božidar
(Mentor)
More about this mentor...
Files:
UN_Kotnik_Jadran_2015.pdf
(1,99 MB)
MD5: E6AC05B04FBA3E45C995547270257FA5
Language:
Slovenian
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
V tem diplomskem delu se ukvarjamo z avtomatskim razpoznavanjem nosu in njegovo segmentacijo v digitalnih posnetkih. Rezultat našega dela je algoritem, ki vrača natančen obris nosu. Za razpoznavanje obrobe nosu smo uporabili modele, za iskanje konice nosu in nosnic pa smo uporabili iskanje svetlejših oziroma temnejših področij. Uspešnost našega algoritma smo nato preverili na zbirki 50 slik. Ugotovili smo, da je razpoznavanje obrobe nosu v večini slik dobro, razen v izjemnih primerih, kjer razpoznamo napačni del slike. Če uporabimo za prepoznavanje nosu modele, potem je bila Hausdorffova razdalja v povprečju enaka 3,221 mm s standardnim odklonom 2,320 mm, t.i. povprečna Hausdorffova razdalja pa je bila v povprečju 1,080 mm s standardnim odklonom 0,696 mm. Algoritem na izhodu oblikuje maske prepoznanih komponent nosu, katere lahko uporabimo v naprednejših aplikacijah.
Keywords:
računalniški vid
,
prepoznavanje nosu
,
razpoznavanje vzorcev
,
digitalna obdelava slik
Place of publishing:
[Maribor
Publisher:
J. Kotnik
Year of publishing:
2015
PID:
20.500.12556/DKUM-54495
UDC:
004.932(043.2)
COBISS.SI-ID:
19311382
NUK URN:
URN:SI:UM:DK:KQI43IWP
Publication date in DKUM:
15.10.2015
Views:
2351
Downloads:
110
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
KOTNIK, Jadran, 2015,
AVTOMATSKO PREPOZNAVANJE NOSU IZ DIGITALNIH POSNETKOV S POSTOPKI RAČUNALNIŠKEGA VIDA
[online]. Bachelor’s thesis. Maribor : J. Kotnik. [Accessed 1 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=54495
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Searching for similar works...
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
AUTOMATED NOSE RECOGNITION FROM DIGITAL IMAGES BY COMPUTER VISION PROCEDURES
Abstract:
In this thesis, we are dealing with automatic nose recognition and segmentation in digital images. The result of our work is an algorithm that returns an accurate nose trim. We used models for nose trim recognition and searching of brighter or darker areas for the nose tip and nostril recognition. We verified the success rate of our algorithm on a set of 50 images. We have found that for most images the nose trim is recognized in a good measure, with the exception of extreme cases, where we recognize the wrong part of the image. When we use models for nose recognition the Hausdorff distance averages at 3.221 mm with a standard deviation of 2.320 mm while the so called average Hausdorff distance averages at 1.080 mm with a standard deviation of 0.696 mm. The algorithm forms mask images as the output. The output of our algorithm are mask images that can be used in more advanced applications.
Keywords:
computer vision
,
nose recognition pattern recognition
,
digital image processing
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back