Processing math: 100%
| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:NZ-flows in strong products of graphs
Authors:ID Imrich, Wilfried (Author)
ID Peterin, Iztok (Author)
ID Špacapan, Simon (Author)
ID Zhang, Cun-Quan (Author)
Files:URL http://dx.doi.org/10.1002/jgt.20455
 
Language:English
Work type:Not categorized
Typology:1.01 - Original Scientific Article
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:Za krepki produkt G1boxtimesG2 grafov G1 in G2 dokažemo, da je mathbbZ3-pretočno kontraktibilen natanko tedaj, ko G1boxtimesG2 ni izomorfen TboxtimesK2 (kar poimenujemo K4-drevo), kjer je T drevo. Sledi, da za G1boxtimesG2 obstaja NZ 3-pretok, razen če je G1boxtimesG2 K4-drevo. Dokaz je konstruktiven in implicira polinomski algoritem, ki nam vrne NZ 3-pretok, če G1boxtimesG2 ni K4-drevo, oziroma NZ 4-pretok sicer.
Keywords:matematika, teorija grafov, celoštevilski pretoki, krepki produkt, poti, cikli, nikjer ničelni pretok, mathematics, graph theory, integer flows, strong product, paths, cycles
Year of publishing:2010
Number of pages:str. 267-276
Numbering:Vol. 64, iss. 4
PID:20.500.12556/DKUM-51864 New window
UDC:519.17
ISSN on article:0364-9024
COBISS.SI-ID:15616089 New window
NUK URN:URN:SI:UM:DK:AIHBFNKY
Publication date in DKUM:10.07.2015
Views:1067
Downloads:125
Metadata:XML DC-XML DC-RDF
Categories:Misc.
:
IMRICH, Wilfried, PETERIN, Iztok, ŠPACAPAN, Simon and ZHANG, Cun-Quan, 2010, NZ-flows in strong products of graphs. Journal of graph theory [online]. 2010. Vol. 64, no. 4, p. 267–276. [Accessed 28 April 2025]. Retrieved from: http://dx.doi.org/10.1002/jgt.20455
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Journal of graph theory
Shortened title:J. graph theory
Publisher:J. Wiley & Sons
ISSN:0364-9024
COBISS.SI-ID:25747712 New window

Secondary language

Language:Unknown
Title:NZ-pretoki v krepkem produktu grafov
Abstract:We prove that the strong product G1boxtimesG2 of G1 and G2 is mathbbZ3-flow contractible if and only if G1boxtimesG2 is not TboxtimesK2, where T is a tree (we call TboxtimesK2 a K4-tree). It follows that G1boxtimesG2 admits an NZ 3-flow unless G1boxtimesG2 is a K4-tree. We also give a constructive proof that yields a polynomial algorithm whose output is an NZ 3-flow if G1boxtimesG2 is not a K4-tree, and an NZ 4-flow otherwise.


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica