| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:INDUKTIVNO UČENJE IZ OPAZOVANJ
Authors:ID Pišorn, Miha (Author)
ID Guid, Nikola (Mentor) More about this mentor... New window
ID Strnad, Damjan (Comentor)
Files:.pdf UNI_Pisorn_Miha_2014.pdf (2,45 MB)
MD5: B2AE36062A0ACC477ED3D685E7A7C332
 
Language:Slovenian
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:V diplomskem delu predstavimo učenje iz podatkov, kot model predvidevanja uporabimo odločitvena drevesa. Preučimo problem prekomernega prilagajanja in pogoste metode za njegovo omiljenje. Ansambelsko učenje je koncept v okviru umetne inteligence, ki združuje metode, ki sestavijo nabor klasifikatorjev in klasificirajo nove vhodne podatke na podlagi glasovanja. Te metode preučimo in pokažemo, zakaj se pogosto odrežejo bolje od posameznih klasifikatorjev. Implementiramo pogosto uporabljan algoritem Adaboost in preizkusimo njegovo obnašanje. Kot klasifikatorje uporabimo odločitvena drevesa.
Keywords:umetna inteligenca, strojno učenje, odločitveno drevo, ansambelsko učenje, Adaboost
Place of publishing:Maribor
Publisher:[M. Pišorn]
Year of publishing:2014
PID:20.500.12556/DKUM-46375 New window
UDC:004.89(043.2)
COBISS.SI-ID:18546710 New window
NUK URN:URN:SI:UM:DK:PSA7HASN
Publication date in DKUM:06.03.2015
Views:2845
Downloads:166
Metadata:XML DC-XML DC-RDF
Categories:KTFMB - FERI
:
PIŠORN, Miha, 2014, INDUKTIVNO UČENJE IZ OPAZOVANJ [online]. Bachelor’s thesis. Maribor : M. Pišorn. [Accessed 24 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=46375
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Searching for similar works...Please wait....
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Title:INDUCTIVE LEARNING FROM OBSERVATION
Abstract:In this diploma thesis we review learning from data using decision trees as a prediction model. We study the problem of overfitting and review common methods used to contain it. Ensemble learning is a concept in artificial intelligence that encompasses methods constructing a set of classifiers and classify new input data by taking a vote of their predictions. We review these methods and show why they often outperform single classifiers. We implement commonly used Adaboost algorithm and test its behavior, using decision trees as classifiers.
Keywords:artificial intelligence, machine learning, decision tree, ensemble learning, Adaboost


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica