Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
INDUKTIVNO UČENJE IZ OPAZOVANJ
Authors:
ID
Pišorn, Miha
(Author)
ID
Guid, Nikola
(Mentor)
More about this mentor...
ID
Strnad, Damjan
(Comentor)
Files:
UNI_Pisorn_Miha_2014.pdf
(2,45 MB)
MD5: B2AE36062A0ACC477ED3D685E7A7C332
Language:
Slovenian
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
V diplomskem delu predstavimo učenje iz podatkov, kot model predvidevanja uporabimo odločitvena drevesa. Preučimo problem prekomernega prilagajanja in pogoste metode za njegovo omiljenje. Ansambelsko učenje je koncept v okviru umetne inteligence, ki združuje metode, ki sestavijo nabor klasifikatorjev in klasificirajo nove vhodne podatke na podlagi glasovanja. Te metode preučimo in pokažemo, zakaj se pogosto odrežejo bolje od posameznih klasifikatorjev. Implementiramo pogosto uporabljan algoritem Adaboost in preizkusimo njegovo obnašanje. Kot klasifikatorje uporabimo odločitvena drevesa.
Keywords:
umetna inteligenca
,
strojno učenje
,
odločitveno drevo
,
ansambelsko učenje
,
Adaboost
Place of publishing:
Maribor
Publisher:
[M. Pišorn]
Year of publishing:
2014
PID:
20.500.12556/DKUM-46375
UDC:
004.89(043.2)
COBISS.SI-ID:
18546710
NUK URN:
URN:SI:UM:DK:PSA7HASN
Publication date in DKUM:
06.03.2015
Views:
2845
Downloads:
166
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
PIŠORN, Miha, 2014,
INDUKTIVNO UČENJE IZ OPAZOVANJ
[online]. Bachelor’s thesis. Maribor : M. Pišorn. [Accessed 24 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=46375
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Searching for similar works...
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
INDUCTIVE LEARNING FROM OBSERVATION
Abstract:
In this diploma thesis we review learning from data using decision trees as a prediction model. We study the problem of overfitting and review common methods used to contain it. Ensemble learning is a concept in artificial intelligence that encompasses methods constructing a set of classifiers and classify new input data by taking a vote of their predictions. We review these methods and show why they often outperform single classifiers. We implement commonly used Adaboost algorithm and test its behavior, using decision trees as classifiers.
Keywords:
artificial intelligence
,
machine learning
,
decision tree
,
ensemble learning
,
Adaboost
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back