Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Algoritmični pristopi k problemu maksimalnega prereza grafov
Authors:
ID
Smogavec, Ksenija
(Author)
ID
Bokal, Drago
(Mentor)
More about this mentor...
Files:
MAG_Smogavec_Ksenija_2014.pdf
(2,88 MB)
MD5: 33B635AD38E31C8C1CF92F1A8EF34BA7
Language:
Slovenian
Work type:
Master's thesis
Typology:
2.09 - Master's Thesis
Organization:
FNM - Faculty of Natural Sciences and Mathematics
Abstract:
Problem maksimalnega prereza grafa je najti takšno razbitje množice vozlišč grafa, da bo vsota uteži na povezavah, ki povezujejo ta dva kosa razbitja, največja. Problem maksimalnega prereza je NP-poln in je eden izmed osnovnih 21-ih Karpovih problemov. Zaradi njegove teoretične in praktične pomembnosti, aplikacije ima v statistični fiziki in vezjih, je bilo zapisanih že kar nekaj različnih aproksimacijskih algoritmov, hevristik ali kombinacij optimizacijskih metod in hevristik, ki rešujejo problem maksimalnega prereza. V magistrskem delu predstavimo problem maksimalnega prereza na posebnih razredih grafov, na katerih lahko najdemo rešitev problema v polinomskem času. Tretje poglavje je namenjeno Goemans Williamsonovemu aproksimacijskemu algoritmu, ki s pomočjo semidefinitnega programa najde rešitev, katere garantirana vrednost je vsaj 87 % optimalne rešitve in predstavlja prelom na področju aproksimacijskih algoritmiov. Poleg njunega algoritma predstavimo še Biq Mac algoritem, ki doseže skoraj optimalne rešitve za grafe z n ≤ 100, in dualno skaliran algoritem, ki je primeren tudi za velike redke grafe. Temu sledi predstavitev posplošitve Goemans Williamsonovega algoritma za maksimalen k-prerez. Nazadnje predstavimo še nekaj hevristik, ki so učinkovite pri iskanju maksimalnega prereza.
Keywords:
maksimalen prerez grafa
,
semidefinitno programiranje
,
hevristika
,
NP-poln problem
Place of publishing:
Maribor
Publisher:
[K. Smogavec]
Year of publishing:
2014
PID:
20.500.12556/DKUM-44031
UDC:
519.17(043.2)
COBISS.SI-ID:
20542216
NUK URN:
URN:SI:UM:DK:VUWAJUW2
Publication date in DKUM:
21.05.2014
Views:
2079
Downloads:
157
Metadata:
Categories:
FNM
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
SMOGAVEC, Ksenija, 2014,
Algoritmični pristopi k problemu maksimalnega prereza grafov
[online]. Master’s thesis. Maribor : K. Smogavec. [Accessed 18 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=44031
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Rak sečnega mehurja - obsevalno zdravljenje
Kirurško zdravljenje raka sečnega mehurja
Rak sečnega mehurja
Obravnava mišično neinvazivnega raka sečnega mehurja
Rak sečnega mehurja pri ženskah
Similar works from other repositories:
ǂThe ǂsignificance of defining the tumour marker Cyfra 21-1 for bladder cancer
Klinični pomen določanja tumorskega označevalca NMP22 pri raku sečnega mehurja
Nurse's role in successful preparation of a patient on cystoskopy [i.e. cystoscopy] and cancer of urinary bladder
NURSING CARE OF PATIENTS AFTER URINARY BLADDER CANCER SURGERY
Adhesion of FITC-labelled chitosan on pig urinary bladder wall
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
Algorithmic approach to max cut problem
Abstract:
Max cut problem consists of partitioning the vertices of undirected weighted graph into two subsets, such that the sum of the weights of the edges that connect vertices in different partitions is maximized. Max cut problem is NP-complete and is one of Karp's 21 problems. Because of its theoretical and practical importance, applications in statistical physics and circuit layout design, various approximation algorithms, heuristics or combinations of optimization and heuristics methods have been developed to solve max cut problem. In this master thesis we describe max cut problem on classes of graphs for which max cut is solvable in polynomial time. Third chapter presents Goemans Williamson approximation algorithm that uses semidefinite programming and provides result of which expected value is at least 87 % times of optimal solution and presents break-through in field of approximation algorithms. We also present Biq Mac algorithm, which can obtain nearly optimal solutions for graphs with n ≤ 100, and dual scaling algorithm, which has been used to solve large scale semidefinite programs. Additionally a generalised Goemans Williamson algorithm for max k-cut is given. The final chapter presents some heuristics that are efficient in solving max cut problem.
Keywords:
max cut
,
semidefinite programming
,
heuristics
,
NP-complete problem
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back