| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:POTI V TOPOLOŠKIH PROSTORIH
Authors:ID Bahč, Tomaž (Author)
ID Banič, Iztok (Mentor) More about this mentor... New window
Files:.pdf UNI_Bahc_Tomaz_2012.pdf (493,31 KB)
MD5: E0F1409B3E72676AC2E7A30AD7573D31
PID: 20.500.12556/dkum/c0f69e38-9095-439b-a127-bcca86abc498
 
Language:Slovenian
Work type:Undergraduate thesis
Typology:2.11 - Undergraduate Thesis
Organization:FNM - Faculty of Natural Sciences and Mathematics
Abstract:V diplomskem delu obravnavamo poti v topoloških prostorih in njihovo uporabo pri povezanosti in homotopiji. V prvem delu so navedeni osnovni pojmi iz topologije, ki so potrebni za razumevanje naslednjih poglavji o povezanosti. Pri povezanosti se posebej osredotočimo na povezanost s potmi. V zadnjem delu je predstavljena homotopija in homotopija poti, kar vodi do izreka o fundamentalni grupi, ki se obravnava kot uvod v algebrsko topologijo.
Keywords:topologija, povezanost, pot, povezanost s potmi, lokalna povezanost, homotopija
Place of publishing:Maribor
Publisher:[T. Bahč]
Year of publishing:2012
PID:20.500.12556/DKUM-38929 New window
UDC:51(043.2)
COBISS.SI-ID:19535112 New window
NUK URN:URN:SI:UM:DK:GBA7ALED
Publication date in DKUM:04.12.2012
Views:20820
Downloads:126
Metadata:XML DC-XML DC-RDF
Categories:FNM
Misc.
:
BAHČ, Tomaž, 2012, POTI V TOPOLOŠKIH PROSTORIH [online]. Bachelor’s thesis. Maribor : T. Bahč. [Accessed 12 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=38929
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Searching for similar works...Please wait....
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Title:PATHS IN TOPOLOGY SPACES
Abstract:In this work we present paths in topological spaces and their applications in connectedness and homotopy. The first section provides basic definitions of topology, which are very important for understanding the chapters that follow about connectedness. When studying connected topological spaces, we give special emphasis to path-conected spaces. The last part presents the homotopy and path homotopy, which leads to the concept of fundamental group, which is considered as an introduction to algebraic topology.
Keywords:topology, connectedness, path connectedness, local connectedness, homotopy


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica