Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
SAMOOJAČITVENO UČENJE
Authors:
ID
Mlakar, Matej
(Author)
ID
Strnad, Damjan
(Mentor)
More about this mentor...
Files:
UNI_Mlakar_Matej_2012.pdf
(1,71 MB)
MD5: 1B2A4260CAD8EE7A2072F6E21619AE90
PID:
20.500.12556/dkum/e00e27d0-f18d-4ddb-b3a6-34e2e97fa37c
Language:
Slovenian
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
V diplomskem delu predstavljamo samoojačitveno učenje, ki je področje strojnega učenja in se ukvarja z vprašanjem, kako naj agent deluje v okolju, da doseže čim večjo nagrado. V nalogi opravimo splošen pregled te teme, nato podrobneje opišemo nekaj pomembnejših metod, eno izmed njih pa implementiramo v mrežnem okolju lovec-plen. Na koncu predstavimo še naš program ter analiziramo dobljene rezultate.
Keywords:
strojno učenje
,
nenadzorovano učenje
,
mrežno okolje lovec-plen
Place of publishing:
Maribor
Publisher:
[M. Mlakar]
Year of publishing:
2012
PID:
20.500.12556/DKUM-36637
UDC:
004.89:004.4(043.2)
COBISS.SI-ID:
16232214
NUK URN:
URN:SI:UM:DK:KU334R2T
Publication date in DKUM:
11.07.2012
Views:
2064
Downloads:
170
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
MLAKAR, Matej, 2012,
SAMOOJAČITVENO UČENJE
[online]. Bachelor’s thesis. Maribor : M. Mlakar. [Accessed 5 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=36637
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Starši otrok s posebnimi potrebami
Proces uvajanja otrok s posebnimi potrebami v redne oddelke vrtca
Vloga tima pri vključevanju otrok s posebnimi potrebami
Ali so vrtci pripravljeni na sprejem otrok s posebnimi potrebami
Sodelovanje učiteljev s starši otrok s posebnimi potrebami
Similar works from other repositories:
Early treatment and inclusion of children with special needs in standard kindergartens
Analiza postopka usmeritve otrok s posebnimi potrebami
Podpora socialnih služb staršem otrok s posebnimi potrebami
Experiences of parents of children with special needs
Pravice otrok s posebnimi potrebami
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
REINFORCEMENT LEARNING
Abstract:
In this diploma work we present reinforcement learning, which is an area of machine learning that studies the question of how an agent ought to act in an environment to achieve maximum reward. In this work we take a general look at the topic, then describe a few of the more important methods in detail and implement one of them in the predator-prey grid world domain. In the end, we present our program and analyze its results.
Keywords:
machine learning
,
unsupervised learning
,
predator-prey grid world
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back