| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:SAMOOJAČITVENO UČENJE
Authors:ID Mlakar, Matej (Author)
ID Strnad, Damjan (Mentor) More about this mentor... New window
Files:.pdf UNI_Mlakar_Matej_2012.pdf (1,71 MB)
MD5: 1B2A4260CAD8EE7A2072F6E21619AE90
PID: 20.500.12556/dkum/e00e27d0-f18d-4ddb-b3a6-34e2e97fa37c
 
Language:Slovenian
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:V diplomskem delu predstavljamo samoojačitveno učenje, ki je področje strojnega učenja in se ukvarja z vprašanjem, kako naj agent deluje v okolju, da doseže čim večjo nagrado. V nalogi opravimo splošen pregled te teme, nato podrobneje opišemo nekaj pomembnejših metod, eno izmed njih pa implementiramo v mrežnem okolju lovec-plen. Na koncu predstavimo še naš program ter analiziramo dobljene rezultate.
Keywords:strojno učenje, nenadzorovano učenje, mrežno okolje lovec-plen
Place of publishing:Maribor
Publisher:[M. Mlakar]
Year of publishing:2012
PID:20.500.12556/DKUM-36637 New window
UDC:004.89:004.4(043.2)
COBISS.SI-ID:16232214 New window
NUK URN:URN:SI:UM:DK:KU334R2T
Publication date in DKUM:11.07.2012
Views:2064
Downloads:170
Metadata:XML DC-XML DC-RDF
Categories:KTFMB - FERI
:
MLAKAR, Matej, 2012, SAMOOJAČITVENO UČENJE [online]. Bachelor’s thesis. Maribor : M. Mlakar. [Accessed 5 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=36637
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Title:REINFORCEMENT LEARNING
Abstract:In this diploma work we present reinforcement learning, which is an area of machine learning that studies the question of how an agent ought to act in an environment to achieve maximum reward. In this work we take a general look at the topic, then describe a few of the more important methods in detail and implement one of them in the predator-prey grid world domain. In the end, we present our program and analyze its results.
Keywords:machine learning, unsupervised learning, predator-prey grid world


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica