| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:PERMUTAEDER
Authors:ID Prah, Klara (Author)
ID Kovše, Matjaž (Mentor) More about this mentor... New window
Files:.pdf UNI_Prah_Klara_2011.pdf (891,37 KB)
MD5: 5A3E4F07452F4127F67C9B0AA8E6BAE7
PID: 20.500.12556/dkum/0a547c3a-3a3c-440e-aed1-fdbb60c4621d
 
Language:Slovenian
Work type:Undergraduate thesis
Organization:FNM - Faculty of Natural Sciences and Mathematics
Abstract:V diplomskem delu bomo podrobneje obravnavali konveksni politop imenovan permutaeder. V prvem poglavju bomo spoznali matematične definicije nekaterih pojmov, ki jih bomo potrebovali v nadaljevanju. V drugem poglavju si bomo pogledali dokaz, da je graf permutaedra hamiltonski graf. V tretjem poglavju bomo dokazali, da razdalje med oglišči v n-dimenzionalnem permutaedru zavzemajo vsa soda števila. V četrtem poglavju si bomo pogledali asociaeder, ki posplošuje permutaeder.
Keywords:permutaeder, zonotop, konveksni politop, hamiltonski graf, minkowskyjeva vsota, Caylejev graf, asociaeder.
Place of publishing:Maribor
Publisher:[K. Prah]
Year of publishing:2011
PID:20.500.12556/DKUM-20025 New window
UDC:51(043.2)
COBISS.SI-ID:18640904 New window
NUK URN:URN:SI:UM:DK:TWJWL7WT
Publication date in DKUM:26.09.2011
Views:2600
Downloads:116
Metadata:XML DC-XML DC-RDF
Categories:FNM
:
PRAH, Klara, 2011, PERMUTAEDER [online]. Bachelor’s thesis. Maribor : K. Prah. [Accessed 14 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=20025
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Title:PERMUTOHEDRON
Abstract:In the thesis we discuss in more detail the convex polytope called permutohedron. In the first chapter we present mathematical definitions of certain concepts which we need later on. In the second chapter we show that the graph of permutohedron is a Hamiltonian graph. In the third chapter we prove that the distances between the vertices in n-dimensional permutohedron take all even numbers. In the fourth chapter we look at another polytope associahedron, which generalizes permutohedron.
Keywords:permutohedron, zonohedron, convex polytopes, Hamiltonian graphs, Minkowski sum, Cayley graph, associahedron.


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica