Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
LINEARNE GRUPE
Authors:
ID
Černevšek, Jasna
(Author)
ID
Benkovič, Dominik
(Mentor)
More about this mentor...
Files:
UNI_Cernevsek_Jasna_2011.pdf
(400,63 KB)
MD5: 5024691910F5AD46BFEDE4D78C460782
PID:
20.500.12556/dkum/acfa999c-1267-44fd-bb40-4c39e217ec6b
Language:
Slovenian
Work type:
Undergraduate thesis
Organization:
FNM - Faculty of Natural Sciences and Mathematics
Abstract:
Diploma je sestavljena iz devetih poglavij. Začetek diplomskega dela vsebuje osnovne pojme in lastnosti matrik, vektorskih prostorov in osnovne lastnosti grup. V naslednjem poglavju je bolj podrobno predstavljena posebna unitarna grupa, kjer opišemo zemljepisne širine, zemljepisne dolžine ter severni in južni pol grupe. Pokažemo tudi, da so konjugirani razredi v unitarni grupi dvodimenzionalne sfere. V poglavju Ortogonalna upodobitev unitarne grupe vpeljemo orbite in pojem vlakna. Tu pokažemo, da je unitarne grupe dvojno pokritje grupe ortogonalne grupe. V nadaljevanju si pogledamo primer nekompaktne grupe. Nato sledi poglavje Enoparametričnih grup, ki so homomorfizmi, ki slikajo iz aditivne grupe v linearno grupo odvedljivih funkcij spremenljivke t ∈ ℝ. Tu omenimo pojem parcialnega odvoda in izrek o inverznih funkcijah. V nadaljevanju se ukvarjamo z Liejevo algebro, ki je prostor vektorjev tangent na G pri identiteti I. S pomočjo pojma gradient in verižnega ulomka podamo potrebne pogoje, da vektor postane tangenta za realno algebrsko množico S. V tem poglavju so definirani pojmi infinitizimalna tangenta, vektor tangent in prostor tangent. Ukvarjamo se z izračunom infinitizimalne spremembe posebne linearne grupe in ortogonalne grupe. Za konec tega poglavja zapišemo definicijo Liejeve algebre bolj abstraktno s pomočjo uporabe operacije komutator. V zadnjem poglavju z naslovom Primeri enostavnih grup navedemo nekaj primerov teh grup ter dokažemo pomemben izrek.
Keywords:
linearne grupe
,
ortogonalna upodobitev
,
enoparametrične grupe
,
Liejeva algebra
,
enostavne grupe.
Place of publishing:
Maribor
Publisher:
[J. Černevšek]
Year of publishing:
2011
PID:
20.500.12556/DKUM-18984
UDC:
51(043.2)
COBISS.SI-ID:
18506504
NUK URN:
URN:SI:UM:DK:RHTRGJXZ
Publication date in DKUM:
07.07.2011
Views:
2930
Downloads:
142
Metadata:
Categories:
FNM
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ČERNEVŠEK, Jasna, 2011,
LINEARNE GRUPE
[online]. Bachelor’s thesis. Maribor : J. Černevšek. [Accessed 8 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=18984
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Analysis of various communication tools effectiveness in the company s.Oliver
Companies undergo digital transformation
Digital transformation - from connecting things to transforming our lives
Critical success factors in the implementation of digital transformation projects
Similar works from other repositories:
Use of augmented reality for teaching human anatomy
Start-up company development process
Informacijsko vedenje devetošolcev
Information literacy of nursing students
Sodobna digitalna marketinška orodja
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
LINEAR GROUPS
Abstract:
The thesis consists from nine chapters. Begining of thesis contains the concepts and properties of matrices, vector spaces and the basic properties of groups, which are often used in thesis. In the next chapter we focus on special unitary group where we present latitude and longitude of unitary group. In this section we show that conjugate classes in unitary groups are two-dimensional spheres. In chapter The ortogonal representation of unitary group are introduced concepts of orbits and fiber. Here we show that unitary group is double covering of ortogonal group. In the continuation we meet special ortogonal group, which is example of noncompact group. Then follows chapter of Oneparametric groups, where is shown that oneparametric groups are homomorphisms from the additive group of real numbers to the general linear group, which are differentiable functions of the variable t ∈ ℝ. Here we mention concept of partial derivatives and the inverse function theorem, which is shown on ortogonal group and special linear group. In the continuation we speak about Lie algebra. Using the concepts of gradient and the chain rule we give necessary conditions for a vector to be tangent to a real algebraic set S. In this chapter we define concepts like infinitizimal tangent, vector tangent and tangent space. We are also dealing with computation of infinitizimal change of and ortogonal groups. In conclusion of this chapter we write the definition od Lie algebra more abstract, where we use the operation bracket. The final chapter, Examples of simple groups, contains some examples of these groups and we prove important theorem.
Keywords:
linear groups
,
ortogonal representation
,
oneparametric groups
,
Lie algebra
,
simple group.
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back