Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
POLINOMSKA PELLOVA ENAČBA
Authors:
ID
Detela, Anita
(Author)
ID
Eremita, Daniel
(Mentor)
More about this mentor...
Files:
UNI_Detela_Anita_2010.pdf
(444,07 KB)
MD5: F20055E71FC92BF640BFA73D264CC909
PID:
20.500.12556/dkum/d69bb7f1-d69d-4843-9401-6dc8e5477741
Language:
Slovenian
Work type:
Undergraduate thesis
Organization:
FNM - Faculty of Natural Sciences and Mathematics
Abstract:
Polinomska Pellova enačba je enačba oblike P^2 - D Q^2 = 1, kjer je D dani polinom, P in Q pa sta neznana polinoma istih spremenljivk kot D in tudi njuni koeficienti so iz istega polja ali kolobarja kot koeficienti polinoma D. Glavni problem pri reševanju polinomske Pellove enačbe je ugotoviti ali obstajajo netrivialne rešitve ali ne. Bistvo tega diplomskega dela je pokazati, da lahko opišemo rešitve polinomske Pellove enačbe v Z[X], če je znana ena rešitev iste enačbe (z istim D iz Z[X]) v kolobarju C[X]. Ko imamo enkrat rešitev (P,Q), kjer sta P, Q iz C[X], so vse rešitve v kolobarju Z[X] neke potence minimalne kompleksne rešitve. Prvo poglavje je namenjeno definiranju osnovnih pojmov, ki so pogosto uporabljeni skozi diplomsko delo. Razvita je tudi teorija, ki je potrebna kasneje za dokaz Masonovega izreka. V drugem poglavju je na kratko predstavljena Pellova enačba za števila in z njo povezane ugotovitve, ki so navdih pri raziskovanju polinomske Pellove enačbe, saj obstaja podobnost pri nekaterih sklepih. Glavna tema diplomskega dela je opisana v tretjem poglavju. S pomočjo Masonovega izreka zapišemo potreben pogoj za rešljivost polinomske Pellove enačbe in izkaže se, da je ta pogoj tudi zadosten, če je polinom D kvadraten polinom. Zatem je podana popolna karakterizacija rešitev polinomske Pellove enačbe, v primeru, ko le ta ima netrivialno rešitev. Zapisan je tudi dokaz posplošenega Nathansonovega rezultata. Na koncu je podanih nekaj primerov za polinom D četrte stopnje.
Keywords:
kolobar
,
polinom
,
Masonov izrek
,
Pellova enačba
,
polinomska Pellova enačba
Place of publishing:
Maribor
Publisher:
[A. Detela]
Year of publishing:
2010
PID:
20.500.12556/DKUM-14066
UDC:
51(043.2)
COBISS.SI-ID:
17681416
NUK URN:
URN:SI:UM:DK:U1DDFCJK
Publication date in DKUM:
17.06.2010
Views:
3523
Downloads:
260
Metadata:
Categories:
FNM
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
DETELA, Anita, 2010,
POLINOMSKA PELLOVA ENAČBA
[online]. Bachelor’s thesis. Maribor : A. Detela. [Accessed 13 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=14066
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Policija kot prekrškovni organ
Vloga sodišča za prekrške v povezavi s policijo kot prekrškovnim organom po določilih novega zakona o prekrških ali Razlogi za pripravo in sprejetje novega zakona o prekrških
Učinkovitost novega prekrškovnega postopka
Vročanje plačilnega naloga
Execution of misdemeanour proceedings according to paragraph 1 of the 57th article of the misdemeanours act (ZP-1)
Similar works from other repositories:
Delo policije kot prekrškovnega organa v sistemu kaznovalnega prava
Organiziranost in delovanje Policije kot prekrškovnega organa
Dileme in perspektive prekrškovnega prava pri izvajanju policijskih nalog od leta 2005 dalje
Procesna vprašanja hitrega postopka o prekršku
Organisational and personnel aspects of the Police minor offences authority
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
POLYNOMIAL PELL'S EQUATION
Abstract:
Polynomial Pell's equation is an equation which is written in a form P^2 - D Q^2 = 1 where D is a given poynomial, P and Q are unknown polynomials in the same variables as D and with coefficients in the same field or ring as those of D. The main difficulty in solving polynomial Pell's equations is to determine whether non-trivial solutions exist or not. The aim of this graduation thesis is to show that we can describe solutions of polynomial Pell's equation in Z[X] if one solution of the same equation (with the same D in Z[X]) in the ring C[X] is known. Once we have a solution (P,Q) where P, Q in C[X], all solutions in Z[X] are certain powers of the minimal complex solution. In the first chapter we define fundamental notions which are frequently used through graduation thesis. There is also theory developed needed later for the proof of Mason's theorem. Pell's equation for integers is shortly introduced in the second chapter. There are some statements that inspire us by researching polynomial Pell's equation. We shall see that certain similar results can be obtained. The main theme of this graduation thesis is described in the third chapter. Using Mason's theorem we give the necessary condition for the solvability of the polynomial Pell's equation which turns out to be also a suficient condition if D is quadratic. We also obtain complete characterization of the solutions of the polynomial Pell's equation in case it has non-trivial solutions. The proof of generalized Nathanson's result is also written. At the end there are some examples for a given quartic polynomial D.
Keywords:
ring
,
polynomial
,
Mason's theorem
,
Pell's equation
,
polynomial Pell's equation
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back