| Naslov: | Predicting relative density of pure magnesium parts produced by laser powder bed fusion using XGBoost |
|---|
| Avtorji: | ID Šket, Kristijan (Avtor) ID Pal, Snehashis (Avtor) ID Gotlih, Janez (Avtor) ID Ficko, Mirko (Avtor) ID Drstvenšek, Igor (Avtor) |
| Datoteke: | applsci-15-08592_(1).pdf (1,60 MB) MD5: 7D8B38000D31C75F4DEE187BEFD579EE
https://www.mdpi.com/2076-3417/15/15/8592
|
|---|
| Jezik: | Angleški jezik |
|---|
| Vrsta gradiva: | Članek v reviji |
|---|
| Tipologija: | 1.01 - Izvirni znanstveni članek |
|---|
| Organizacija: | FS - Fakulteta za strojništvo
|
|---|
| Opis: | In this work, Laser Powder Bed Fusion (LPBF), an additive manufacturing (AM) process, was optimised to produce pure magnesium components. The focus of the presented work is on the prediction of the relative product density using the machine learning model XGBoost to improve the production process and thus the usability of the material for practical use. Experimental tests with different parameters, laser power, scanning speed and layer thickness, and fixed parameters, track overlapping and hatching distance, were analysed and resulted in relative material densities between 89.29% and 99.975%. The XGBoost model showed high predictive power, achieving an R2 test result of 0.835, a mean absolute error (MAE) of 0.728 and a root mean square error (RMSE) of 0.982. Feature importance analysis showed that the interaction of laser power and scanning speed had the largest influence on the predictions at 35.9%, followed by laser power × layer thickness at 29.0%. The individual contributions were laser power (11.8%), scanning speed (10.7%), scanning speed × layer thickness (9.0%) and layer thickness (3.6%). These results provide a data-based method for LPBF parameter settings that improve manufacturing efficiency and component performance in the aerospace, automotive and biomedical industries and identify optimal parameter regions for a high density, serving as a pre-optimisation stage. |
|---|
| Ključne besede: | additive manufacturing, machine learning, XG Boost, magnesium, relative density |
|---|
| Status publikacije: | Objavljeno |
|---|
| Verzija publikacije: | Objavljena publikacija |
|---|
| Poslano v recenzijo: | 08.07.2025 |
|---|
| Datum sprejetja članka: | 31.07.2025 |
|---|
| Datum objave: | 02.08.2025 |
|---|
| Založnik: | MDPI |
|---|
| Leto izida: | 2025 |
|---|
| Št. strani: | 17 str. |
|---|
| Številčenje: | Vol. 15, iss. 15, [article no.] 8592 |
|---|
| PID: | 20.500.12556/DKUM-95870  |
|---|
| UDK: | 681.5:004.8 |
|---|
| COBISS.SI-ID: | 246395139  |
|---|
| DOI: | 10.3390/app15158592  |
|---|
| ISSN pri članku: | 2076-3417 |
|---|
| Datum objave v DKUM: | 03.11.2025 |
|---|
| Število ogledov: | 0 |
|---|
| Število prenosov: | 5 |
|---|
| Metapodatki: |  |
|---|
| Področja: | Ostalo
|
|---|
|
:
|
Kopiraj citat |
|---|
| | | | Skupna ocena: | (0 glasov) |
|---|
| Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
|---|
| Objavi na: |  |
|---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |