Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
Statistics
Login
First page
>
Show document
Show document
Title:
Analiza učinkovitosti algoritmov pri prepoznavanju in odstranjevanju sovražnega govora in lažnih informacij
Authors:
ID
Feltrin, Alen
(
Author
)
ID
Polančič, Gregor
(
Mentor
)
More about this mentor...
Files:
UN_Feltrin_Alen_2025.pdf
(2,25 MB)
MD5: 9A4879603BECC974900F4649661D6AAD
Language:
Slovenian
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
Diplomsko delo preučuje učinkovitost algoritmov umetne inteligence pri zaznavanju sovražnega govora in dezinformacij v angleškem in slovenskem jeziku. Ocenjeni so bili modeli BERT, IMSyPP in SVC na javnih podatkovnih nizih. Rezultati potrjujejo prednost globokih modelov v angleščini, medtem ko v slovenščini učinkovitost omejuje pomanjkanje lokalnega prilagajanja. Analiza razkriva vpliv jezikovne pristranskosti ter potrjuje pomen metod razložljive umetne inteligence (LIME) za večjo transparentnost in zaupanje pri moderaciji vsebin.
Keywords:
umetna inteligenca
,
sovražni govor
,
dezinformacije
,
BERT
,
družbena omrežja
Place of publishing:
Maribor
Year of publishing:
2025
PID:
20.500.12556/DKUM-95315
Publication date in DKUM:
03.11.2025
Views:
0
Downloads:
7
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Average score:
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:
12.09.2025
Secondary language
Language:
English
Title:
Analysis of the effectiveness of algorithms in detecting and removing hate speech and misinformation
Abstract:
The thesis examines the effectiveness of artificial intelligence algorithms in detecting hate speech and disinformation in English and Slovenian. Models BERT, IMSyPP, and SVC were evaluated using public datasets. Results confirm the superiority of deep models in English, while performance in Slovenian is limited by the lack of local adaptation. The analysis highlights the impact of linguistic bias and confirms the value of explainable AI methods (LIME) in improving transparency and trust in content moderation.
Keywords:
artificial intelligence
,
hate speech
,
misinformation
,
BERT
,
social media
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back