| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Stiskanje vokseliziranih drevesnih struktur na podlagi napovedi
Authors:ID Slomšek, Matej (Author)
ID Kohek, Štefan (Mentor) More about this mentor... New window
ID Strnad, Damjan (Comentor)
Files:.pdf UN_Slomsek_Matej_2025.pdf (1,23 MB)
MD5: E569E9079F2E66A4BFC8DE2394C5FAA4
 
.zip UN_Slomsek_Matej_2025.zip (4,28 MB)
MD5: FAE4F4D0D655F6C757A1C1B3671B039F
 
Language:Slovenian
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:Diplomsko delo obravnava stiskanje vokseliziranih drevesnih struktur s pomočjo napovednega modela. Cilj raziskave je bil preučiti učinkovitost brezizgubnega stiskanja, ki temelji na napovedovanju podatkov in kasnejšem stiskanju napak. Uporabili smo različne algoritme, kot so Zip, 7-Zip, WinRAR in FLVC, ter jih primerjali z našo metodo NM (napovedna metoda). Rezultati kažejo, da FLVC dosega najboljša razmerja stiskanja, NM pa se izkaže kot učinkovit pristop za manjše datoteke
Keywords:voksel, drevesna struktura, brezizgubno stiskanje, RLE, stiskanje, vokselizacija, napoved, napaka napovedi, FLVC.
Place of publishing:Maribor
Year of publishing:2025
PID:20.500.12556/DKUM-92543 New window
Publication date in DKUM:08.05.2025
Views:0
Downloads:6
Metadata:XML DC-XML DC-RDF
Categories:KTFMB - FERI
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Licensing start date:17.04.2025

Secondary language

Language:English
Title:Prediction-Based compression of voxelized tree structures
Abstract:This thesis explores compression of voxelized tree structures using a prediction-based model. The goal of the study was to examine the effectiveness of lossless compression, utilizing predictive encoding followed by residual compression. Various algorithms, including Zip, 7-Zip, WinRAR, and FLVC, were tested and compared with our NM (Prediction Method). The results indicate that FLVC achieves the best compression ratios, while NM proves to be a viable approach for smaller files.
Keywords:voxel, tree structure, lossless compression, RLE, compression, voxelization, prediction, prediction error, FLVC.


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica