| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Izpis gradiva Pomoč

Naslov:Cephalometric landmark detection in lateral skull X-ray images by using improved spatialconfiguration-net
Avtorji:ID Šavc, Martin (Avtor)
ID Sedej, Gašper (Avtor)
ID Potočnik, Božidar (Avtor)
Datoteke:.pdf applsci-12-04644-v2.pdf (2,46 MB)
MD5: CE53D2E64B44D1803FCDE6EEB34C63E6
 
URL https://www.mdpi.com/2076-3417/12/9/4644
 
Jezik:Angleški jezik
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FERI - Fakulteta za elektrotehniko, računalništvo in informatiko
Opis:Accurate automated localization of cephalometric landmarks in skull X-ray images is the basis for planning orthodontic treatments, predicting skull growth, or diagnosing face discrepancies. Such diagnoses require as many landmarks as possible to be detected on cephalograms. Today’s best methods are adapted to detect just 19 landmarks accurately in images varying not too much. This paper describes the development of the SCN-EXT convolutional neural network (CNN), which is designed to localize 72 landmarks in strongly varying images. The proposed method is based on the SpatialConfiguration-Net network, which is upgraded by adding replications of the simpler local appearance and spatial configuration components. The CNN capacity can be increased without increasing the number of free parameters simultaneously by such modification of an architecture. The successfulness of our approach was confirmed experimentally on two datasets. The SCN-EXT method was, with respect to its effectiveness, around 4% behind the state-of-the-art on the small ISBI database with 250 testing images and 19 cephalometric landmarks. On the other hand, our method surpassed the state-of-the-art on the demanding AUDAX database with 4695 highly variable testing images and 72 landmarks statistically significantly by around 3%. Increasing the CNN capacity as proposed is especially important for a small learning set and limited computer resources. Our algorithm is already utilized in orthodontic clinical practice.
Ključne besede:detection of cephalometric landmarks, skull X-ray images, convolutional neural networks, deep learning, SpatialConfiguration-Net architecture, AUDAX database
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Poslano v recenzijo:14.04.2022
Datum sprejetja članka:29.04.2022
Datum objave:05.05.2022
Založnik:MDPI AG
Leto izida:2022
Št. strani:21 str.
Številčenje:Vol. 12, iss. 9
PID:20.500.12556/DKUM-92291 Novo okno
UDK:004.8
COBISS.SI-ID:106866179 Novo okno
DOI:10.3390/app12094644 Novo okno
ISSN pri članku:2076-3417
Avtorske pravice:© 2022 by the authors
Datum objave v DKUM:27.03.2025
Število ogledov:0
Število prenosov:5
Metapodatki:XML DC-XML DC-RDF
Področja:Ostalo
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Applied sciences
Skrajšan naslov:Appl. sci.
Založnik:MDPI
ISSN:2076-3417
COBISS.SI-ID:522979353 Novo okno

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0041-2020
Naslov:Računalniški sistemi, metodologije in inteligentne storitve

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:slike, konvolucijske nevronske mreže, globoko učenje


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici