| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Izpis gradiva Pomoč

Naslov:Enhancing trust in automated 3D point cloud data interpretation through explainable counterfactuals
Avtorji:ID Holzinger, Andreas (Avtor)
ID Lukač, Niko (Avtor)
ID Rozajac, Dzemail (Avtor)
ID Johnston, Emil (Avtor)
ID Kočić, Veljka (Avtor)
ID Hoerl, Bernhard (Avtor)
ID Gollob, Christoph (Avtor)
ID Nothdurft, Arne (Avtor)
ID Stampfer, Karl (Avtor)
ID Schweng, Stefan (Avtor)
ID Del Ser, Javier (Avtor)
Datoteke:.htm S1566253525001058.htm (186,97 KB)
MD5: 89E839BA9E89AD2EFB12B900D101AA39
 
Jezik:Angleški jezik
Vrsta gradiva:Neznano
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FERI - Fakulteta za elektrotehniko, računalništvo in informatiko
Opis:This paper introduces a novel framework for augmenting explainability in the interpretation of point cloud data by fusing expert knowledge with counterfactual reasoning. Given the complexity and voluminous nature of point cloud datasets, derived predominantly from LiDAR and 3D scanning technologies, achieving interpretability remains a significant challenge, particularly in smart cities, smart agriculture, and smart forestry. This research posits that integrating expert knowledge with counterfactual explanations – speculative scenarios illustrating how altering input data points could lead to different outcomes – can significantly reduce the opacity of deep learning models processing point cloud data. The proposed optimization-driven framework utilizes expert-informed ad-hoc perturbation techniques to generate meaningful counterfactual scenarios when employing state-of-the-art deep learning architectures. The optimization process minimizes a multi-criteria objective comprising counterfactual metrics such as similarity, validity, and sparsity, which are specifically tailored for point cloud datasets. These metrics provide a quantitative lens for evaluating the interpretability of the counterfactuals. Furthermore, the proposed framework allows for the definition of explicit interpretable counterfactual perturbations at its core, thereby involving the audience of the model in the counterfactual generation pipeline and ultimately, improving their overall trust in the process. Results demonstrate a notable improvement in both the interpretability of the model’s decisions and the actionable insights delivered to end-users. Additionally, the study explores the role of counterfactual reasoning, coupled with expert input, in enhancing trustworthiness and enabling human-in-the-loop decision-making processes. By bridging the gap between complex data interpretations and user comprehension, this research advances the field of explainable AI, contributing to the development of transparent, accountable, and human-centered artificial intelligence systems.
Ključne besede:explainable AI, point cloud data, counterfactual reasoning, information fusion, interpretability, human-centered AI
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Poslano v recenzijo:07.02.2025
Datum sprejetja članka:13.02.2025
Datum objave:01.07.2025
Leto izida:2025
Št. strani:15 str.
Številčenje:Vol. 119, [article no.] 103032
PID:20.500.12556/DKUM-91959 Novo okno
UDK:004.8
COBISS.SI-ID:228135939 Novo okno
DOI:10.1016/j.inffus.2025.103032 Novo okno
ISSN pri članku:1872-6305
Avtorske pravice:© 2025 The Authors
Datum objave v DKUM:06.03.2025
Število ogledov:0
Število prenosov:6
Metapodatki:XML DC-XML DC-RDF
Področja:Ostalo
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Information fusion
Založnik:Elsevier BV
ISSN:1872-6305
COBISS.SI-ID:148692227 Novo okno

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0041-2020
Naslov:Računalniški sistemi, metodologije in inteligentne storitve

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:J7-50095-2023
Naslov:Prostorsko-časovni algoritmi za ocenitev mikroklimatskih parametrov

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:umetna inteligenca, podatki v oblaku


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici