Naslov: | Efficient encoding and decoding of voxelized models for machine learning-based applications |
---|
Avtorji: | ID Strnad, Damjan (Avtor) ID Kohek, Štefan (Avtor) ID Žalik, Borut (Avtor) ID Váša, Libor (Avtor) ID Nerat, Andrej (Avtor) |
Datoteke: | Efficient_encoding_and_decoding_of_voxelized_models_for_machine_learning-based_applications.pdf (20,93 MB) MD5: 5827A8FEB767966A4E1E5175EA79C0A3
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Članek v reviji |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | FERI - Fakulteta za elektrotehniko, računalništvo in informatiko
|
---|
Opis: | Point clouds have become a popular training data for many practical applications of machine learning in the fields of environmental modeling and precision agriculture. In order to reduce high space requirements and the effect of noise in the data, point clouds are often transformed to a structured representation such as a voxel grid. Storing, transmitting and consuming voxelized geometry, however, remains a challenging problem for machine learning pipelines running on devices with limited amount of on-chip memory with low access latency. A viable solution is to store the data in a compact encoded format, and perform on-the-fly decoding when it is needed for processing. Such on-demand expansion must be fast in order to avoid introducing substantial additional delay to the pipeline. This can be achieved by parallel decoding, which is particularly suitable for massively parallel architecture of GPUs on which the majority of machine learning is currently executed. In this paper, we present such method for efficient and parallelizable encoding/decoding of voxelized geometry. The method employs multi-level context-aware prediction of voxel occupancy based on the extracted binary feature prediction table, and encodes the residual grid with a pointerless sparse voxel octree (PSVO). We particularly focused on encoding the datasets of voxelized trees, obtained from both synthetic tree models and LiDAR point clouds of real trees. The method achieved 15.6% and 12.8% reduction of storage size with respect to plain PSVO on synthetic and real dataset, respectively. We also tested the method on a general set of diverse voxelized objects, where an average 11% improvement of storage space was achieved. |
---|
Ključne besede: | voxel grid, feature prediction, tree models, prediction-based encoding, key voxels, residuals, sparse voxel octree |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Datum objave: | 06.01.2025 |
---|
Založnik: | IEEE ACCESS |
---|
Leto izida: | 2025 |
---|
Št. strani: | 11 str. |
---|
PID: | 20.500.12556/DKUM-91506 |
---|
UDK: | 004.9 |
---|
COBISS.SI-ID: | 221454083 |
---|
DOI: | 10.1109/ACCESS.2025.3526202 |
---|
ISSN pri članku: | 2169-3536 |
---|
Datum objave v DKUM: | 09.01.2025 |
---|
Število ogledov: | 0 |
---|
Število prenosov: | 0 |
---|
Metapodatki: | |
---|
Področja: | Ostalo
|
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |