Naslov: | A case study on entropy-aware block-based linear transforms for lossless image compression |
---|
Avtorji: | ID Žalik, Borut (Avtor) ID Podgorelec, David (Avtor) ID Kolingerová, Ivana (Avtor) ID Strnad, Damjan (Avtor) ID Kohek, Štefan (Avtor) |
Datoteke: | s41598-024-79038-2_(1).pdf (5,13 MB) MD5: F1753726E04619726C945756447631C3
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Članek v reviji |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | FERI - Fakulteta za elektrotehniko, računalništvo in informatiko
|
---|
Opis: | Data compression algorithms tend to reduce information entropy, which is crucial, especially in the case of images, as they are data intensive. In this regard, lossless image data compression is especially challenging. Many popular lossless compression methods incorporate predictions and various types of pixel transformations, in order to reduce the information entropy of an image. In this paper, a block optimisation programming framework is introduced to support various experiments on raster images, divided into blocks of pixels. Eleven methods were implemented within , including prediction methods, string transformation methods, and inverse distance weighting, as a representative of interpolation methods. Thirty-two different greyscale raster images with varying resolutions and contents were used in the experiments. It was shown that reduces information entropy better than the popular JPEG LS and CALIC predictors. The additional information associated with each block in is then evaluated. It was confirmed that, despite this additional cost, the estimated size in bytes is smaller in comparison to the sizes achieved by the JPEG LS and CALIC predictors. |
---|
Ključne besede: | computer science, information entropy, prediction, inverse distance transform, string transformations |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Poslano v recenzijo: | 27.07.2024 |
---|
Datum sprejetja članka: | 05.11.2024 |
---|
Datum objave: | 28.11.2024 |
---|
Založnik: | Springer Natur |
---|
Leto izida: | 2024 |
---|
Št. strani: | 15 str. |
---|
PID: | 20.500.12556/DKUM-91488  |
---|
UDK: | 004.9 |
---|
COBISS.SI-ID: | 217965571  |
---|
DOI: | 10.1038/s41598-024-79038-2  |
---|
ISSN pri članku: | 2045-2322 |
---|
Avtorske pravice: | © The Author(s) 2024 |
---|
Datum objave v DKUM: | 07.01.2025 |
---|
Število ogledov: | 0 |
---|
Število prenosov: | 5 |
---|
Metapodatki: |  |
---|
Področja: | Ostalo
|
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: |  |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |