| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Izpis gradiva Pomoč

Naslov:Using generative AI to improve the performance and interpretability of rule-based diagnosis of Type 2 diabetes mellitus
Avtorji:ID Kopitar, Leon (Avtor)
ID Fister, Iztok (Avtor)
ID Štiglic, Gregor (Avtor)
Datoteke:.pdf information-15-00162.pdf (1,29 MB)
MD5: 59EC8DBE817D570B9CA5890078BFB7D0
 
URL https://www.mdpi.com/2078-2489/15/3/162
 
Jezik:Angleški jezik
Vrsta gradiva:Znanstveno delo
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FZV - Fakulteta za zdravstvene vede
FERI - Fakulteta za elektrotehniko, računalništvo in informatiko
Opis:Introduction: Type 2 diabetes mellitus is a major global health concern, but interpreting machine learning models for diagnosis remains challenging. This study investigates combining association rule mining with advanced natural language processing to improve both diagnostic accuracy and interpretability. This novel approach has not been explored before in using pretrained transformers for diabetes classification on tabular data. Methods: The study used the Pima Indians Diabetes dataset to investigate Type 2 diabetes mellitus. Python and Jupyter Notebook were employed for analysis, with the NiaARM framework for association rule mining. LightGBM and the dalex package were used for performance comparison and feature importance analysis, respectively. SHAP was used for local interpretability. OpenAI GPT version 3.5 was utilized for outcome prediction and interpretation. The source code is available on GitHub. Results: NiaARM generated 350 rules to predict diabetes. LightGBM performed better than the GPT-based model. A comparison of GPT and NiaARM rules showed disparities, prompting a similarity score analysis. LightGBM’s decision making leaned heavily on glucose, age, and BMI, as highlighted in feature importance rankings. Beeswarm plots demonstrated how feature values correlate with their influence on diagnosis outcomes. Discussion: Combining association rule mining with GPT for Type 2 diabetes mellitus classification yields limited effectiveness. Enhancements like preprocessing and hyperparameter tuning are required. Interpretation challenges and GPT’s dependency on provided rules indicate the necessity for prompt engineering and similarity score methods. Variations in feature importance rankings underscore the complexity of T2DM. Concerns regarding GPT’s reliability emphasize the importance of iterative approaches for improving prediction accuracy.
Ključne besede:GPT, association rule mining, classification, interpretability, diagnostics
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Poslano v recenzijo:09.02.2024
Datum sprejetja članka:05.03.2024
Datum objave:12.03.2024
Založnik:MDPI
Leto izida:2024
Št. strani:str. 1-17
Številčenje:letn. 15, št. 3, št. članka 162
PID:20.500.12556/DKUM-91187 Novo okno
UDK:004.8:616.379-008.64
COBISS.SI-ID:189955587 Novo okno
DOI:10.3390/info15030162 Novo okno
ISSN pri članku:2078-2489
Avtorske pravice:© 2024 by the authors.
Datum objave v DKUM:26.11.2024
Število ogledov:0
Število prenosov:250
Metapodatki:XML DC-XML DC-RDF
Področja:Ostalo
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je financirano iz projekta

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0057
Naslov:Obogatitev pogovornih razložljivih metod umetne inteligence v zdravstvu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:12.03.2024

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:GPT, rudarjenje asociativnih pravil, klasifikacija, interpretacija, diagnostika


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici