| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Izpis gradiva Pomoč

Naslov:Tilt correction toward building detection of remote sensing images
Avtorji:ID Liu, Kang (Avtor)
ID Jiang, Zhiyu (Avtor)
ID Xu, Mingliang (Avtor)
ID Perc, Matjaž (Avtor)
ID Li, Xuelong (Avtor)
Datoteke:.pdf Liu-2021-Tilt_Correction_Toward_Building_Detec.pdf (8,62 MB)
MD5: D5F7D17CB050F91939E00D053E4F1688
 
URL https://doi.org/10.1109/JSTARS.2021.3083481
 
Jezik:Angleški jezik
Vrsta gradiva:Znanstveno delo
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FNM - Fakulteta za naravoslovje in matematiko
Opis:Building detection is a crucial task in the field of remote sensing, which can facilitate urban construction planning, disaster survey, and emergency landing. However, for large-size remote sensing images, the great majority of existing works have ignored the image tilt problem. This problem can result in partitioning buildings into separately oblique parts when the large-size images are partitioned. This is not beneficial to preserve semantic completeness of the building objects. Motivated by the above fact, we first propose a framework for detecting objects in a large-size image, particularly for building detection. The framework mainly consists of two phases. In the first phase, we particularly propose a tilt correction (TC) algorithm, which contains three steps: texture mapping, tilt angle assessment, and image rotation. In the second phase, building detection is performed with object detectors, especially deep-neural-network-based methods. Last but not least, the detection results will be inversely mapped to the original large-size image. Furthermore, a challenging dataset named Aerial Image Building Detection is contributed for the public research. To evaluate the TC method, we also define an evaluation metric to compute the cost of building partition. The experimental results demonstrate the effects of the proposed method for building detection.
Ključne besede:building detection, cost of building partition, deep neural network, remote sensing, tilt correction
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Poslano v recenzijo:16.03.2021
Datum sprejetja članka:21.05.2021
Datum objave:25.05.2021
Založnik:Institute of Electrical and Electronics Engineers
Leto izida:2021
Št. strani:Str. 5854-5866
Številčenje:Letn. 14
PID:20.500.12556/DKUM-90828 Novo okno
UDK:53
COBISS.SI-ID:67635971 Novo okno
DOI:10.1109/JSTARS.2021.3083481 Novo okno
ISSN pri članku:1939-1404
Datum objave v DKUM:26.09.2024
Število ogledov:0
Število prenosov:1
Metapodatki:XML DC-XML DC-RDF
Področja:Ostalo
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:IEEE journal of selected topics in applied earth observations and remote sensing
Skrajšan naslov:IEEE journal of select. topic. in appl. earth observ. and remote sensing
Založnik:Institute of Electrical and Electronics Engineers
ISSN:1939-1404
COBISS.SI-ID:6747220 Novo okno

Gradivo je financirano iz projekta

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Key Research Program of Frontier Sciences
Številka projekta:QYZDY-SSW-JSC044

Financer:Drugi - Drug financer ali več financerjev
Številka projekta:61871470

Financer:Drugi - Drug financer ali več financerjev
Številka projekta:62001397

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Natural Science Basic Research Program of Shaanxi
Številka projekta:2020JQ-212

Financer:Drugi - Drug financer ali več financerjev
Številka projekta:61424010207

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:25.05.2021

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:detekcija zgradb, cena parceliranja zgradb, globoka nevronska mreža, oddaljeno zaznavanje, popravek nagiba


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici