| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:An asymptotic relation between the wirelength of an embedding and the Wiener index
Authors:ID Kumar, K. Jagadeesh (Author)
ID Klavžar, Sandi (Author)
ID Rajan, R. Sundara (Author)
ID Rajasingh, Indra (Author)
ID Rajalaxmi, T. M. (Author)
Files:.pdf Kumar-2021-An_asymptotic_relation_between_the.pdf (365,63 KB)
MD5: 621202A9CD656BBD2D699C107E0C85D6
 
URL https://www.dmlett.com/journal-archive/v7/
 
Language:English
Work type:Scientific work
Typology:1.01 - Original Scientific Article
Organization:FNM - Faculty of Natural Sciences and Mathematics
Abstract:Wirelength is an important criterion to validate the quality of an embedding of a graph into a host graph and is used in particular in VLSI (Very-Large-Scale Integration) layout designs. Wiener index plays a significant role in mathematical chemistry, cheminformatics, and elsewhere. In this note these two concepts are related by proving that the Wiener index of a host graph is an upper bound for the wirelength of a given embedding. The wirelength of embedding complete ▫$2^p$▫-partite graphs into Cartesian products of paths and/or cycles as the function of the Wiener index is determined. The result is an asymptotic approximation of the general upper bound.
Keywords:Wiener index, embedding, wirelength, complete 2p-partite graph, Cartesian product of graphs, integer labeling
Publication status:Published
Publication version:Version of Record
Submitted for review:14.06.2021
Article acceptance date:16.07.2021
Publication date:17.07.2021
Publisher:National University of Computer and Emerging Science, University of Management and Technology, University of Management and Technology
Year of publishing:2021
Number of pages:Str. 74-78
Numbering:Letn. 7
PID:20.500.12556/DKUM-90784 New window
UDC:519.17
ISSN on article:2664-2557
COBISS.SI-ID:70732035 New window
DOI:10.47443/dml.2021.0063 New window
Publication date in DKUM:23.09.2024
Views:0
Downloads:3
Metadata:XML DC-XML DC-RDF
Categories:Misc.
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Discrete mathematics letters
Publisher:National University of Computer and Emerging Science, University of Management and Technology, University of Management and Technology
ISSN:2664-2557
COBISS.SI-ID:2048580371 New window

Document is financed by a project

Funder:Other - Other funder or multiple funders
Project number:ECR/2016/1993

Funder:ARRS - Slovenian Research Agency
Project number:P1-0297
Name:Teorija grafov

Funder:ARRS - Slovenian Research Agency
Project number:J1-9109
Name:Sodobne invariante grafov

Funder:ARRS - Slovenian Research Agency
Project number:J1-1693
Name:Sodobni in novi metrični koncepti v teoriji grafov

Funder:ARRS - Slovenian Research Agency
Project number:N1-0095
Name:Turanova števila in ekstremalni problemi za poti

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Licensing start date:17.07.2021

Secondary language

Language:Slovenian
Title:Asimptotična relacija med žično dolžino vložitve in Wienerjevim indeksom
Abstract:Žična dolžina žice je pomembno merilo za oceno kakovosti vložitve grafa v gostiteljski graf in se uporablja zlasti v VLSI načrtih. Wienerjev indeks igra pomembno vlogo v matematični kemiji, kemoinformatiki in drugje. V tej članku povežemo ta dva koncepta tako, da dokažemo, da je Wienerjev indeks gostiteljskega grafa zgornja meja žične dolžine dane vložitve. Kot funkcija Wienerjevega indeksa je določena žična dolžina vložitve polnih ▫$2^p$▫-partitnih grafov v kartezični produkt poti in/ali ciklov. Rezultat je asimptotična aproksimacija splošne zgornje meje.
Keywords:Wienerjev index, vložitev, žična dolžina, polni 2p-partitni graf, kartezični produkt grafov, celoštevilska označitev


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica