| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:A new framework to approach Vizing's conjecture
Authors:ID Brešar, Boštjan (Author)
ID Hartnell, Bert L. (Author)
ID Henning, Michael A. (Author)
ID Kuenzel, Kirsti (Author)
ID Rall, Douglas F. (Author)
Files:.pdf Bresar-2021-A_NEW_FRAMEWORK_TO_APPROACH_VIZING.pdf (179,75 KB)
MD5: CAFDC8DCB3BCE06743FB1E3A2F53E3EF
 
URL https://doi.org/10.7151/dmgt
 
Language:English
Work type:Scientific work
Typology:1.01 - Original Scientific Article
Organization:FNM - Faculty of Natural Sciences and Mathematics
Abstract:We introduce a new setting for dealing with the problem of the domination number of the Cartesian product of graphs related to Vizing's conjecture. The new framework unifies two different approaches to the conjecture. The most common approach restricts one of the factors of the product to some class of graphs and proves the inequality of the conjecture then holds when the other factor is any graph. The other approach utilizes the so-called Clark-Suen partition for proving a weaker inequality that holds for all pairs of graphs. We demonstrate the strength of our framework by improving the bound of Clark and Suen as follows: ɣ(X◻Y) ≥ max{1/2ɣ(X) ɣt(Y), 1/2ɣt(X) ɣ(Y)}, where ɣ stands for the domination number, ɣt is the total domination number, and X◻Y is the Cartesian product of graphs X and Y.
Keywords:Cartesian product, total domination, Vizing's conjecture, Clark and Suen bound
Publication status:Published
Publication version:Version of Record
Submitted for review:21.09.2019
Article acceptance date:15.12.2019
Publisher:Technical University Press
Year of publishing:2021
Number of pages:Str. 749-762
Numbering:Letn. 41, Št. 3
PID:20.500.12556/DKUM-89748 New window
UDC:519.17
ISSN on article:1234-3099
COBISS.SI-ID:52166915 New window
DOI:10.7151/dmgt.2293 New window
Publication date in DKUM:09.08.2024
Views:86
Downloads:11
Metadata:XML DC-XML DC-RDF
Categories:Misc.
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Discussiones mathematicae : Graph theory
Shortened title:Discuss. Math., Graph Theory
Publisher:Technical University Press
ISSN:1234-3099
COBISS.SI-ID:7487065 New window

Document is financed by a project

Funder:ARRS - Slovenian Research Agency
Project number:P1-0297
Name:Teorija grafov

Funder:ARRS - Slovenian Research Agency
Project number:N1-0043
Name:Kombinatorični problemi s poudarkom na igrah

Funder:ARRS - Slovenian Research Agency
Project number:J1-9109
Name:Sodobne invariante grafov

Funder:Other - Other funder or multiple funders
Project number:#209654

Funder:Other - Other funder or multiple funders

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.

Secondary language

Language:Slovenian
Title:Pakirna barvanja podkubičnih zunanje ravninskih grafov
Abstract:V članku vpeljemo nov okvir za reševanje problema dominantnega števila kartezičnega produkta grafov, ki je povezan z Vizingovo domnevo. Novi okvir združi dva različna pristopa k domnevi. V najbolj standardnem pristopu se v enem faktorju produkta omejimo na neki razred grafov in dokažemo domnevano neenakost, pri čemer je drugi faktor produkta poljuben graf. Drugi pristop uporablja tako imenovano particijo Clarka in Suena, s katero se dokaže neka šibkejša neenakost za vse pare grafov. Moč našega novega pristopa demonstriramo z izboljšavo meje Clarka in Suena na naslednji način: ɣ(X◻Y) ≥ max{1/2ɣ(X) ɣt(Y), 1/2ɣt(X) ɣ(Y)}, kjer je ɣ dominantno število grafa, ɣt njegovo celotno dominantno število, X◻Y pa kartezični produkt grafov X in Y.
Keywords:kartezični produkt, celotna dominacija, Vizingova domneva, meja Clarka in Suena


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica