| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Izpis gradiva Pomoč

Naslov:FairBoost: Boosting supervised learning for learning on multiple sensitive features
Avtorji:ID Colakovic, Ivona (Avtor)
ID Karakatič, Sašo (Avtor)
Datoteke:.pdf 1-s2.0-S0950705123007499-main.pdf (1,70 MB)
MD5: 370A93F96E550A132F708A58DDFDDF6D
 
URL https://www.sciencedirect.com/science/article/pii/S0950705123007499?via%3Dihub
 
Jezik:Angleški jezik
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FERI - Fakulteta za elektrotehniko, računalništvo in informatiko
Opis:The vast majority of machine learning research focuses on improving the correctness of the outcomes (i.e., accuracy, error-rate, and other metrics). However, the negative impact of machine learning outcomes can be substantial if the consequences marginalize certain groups of data, especially if certain groups of people are the ones being discriminated against. Thus, recent papers try to tackle the unfair treatment of certain groups of data (humans), but mostly focus on only one sensitive feature with binary values. In this paper, we propose an ensemble boosting FairBoost that takes into consideration fairness as well as accuracy to mitigate unfairness in classification tasks during the model training process. This method tries to close the gap between proposed approaches and real-world applications, where there is often more than one sensitive feature that contains multiple categories. The proposed approach checks the bias and corrects it through the iteration of building the boosted ensemble. The proposed FairBoost is tested within the experimental setting and compared to similar existing algorithms. The results on different datasets and settings show no significant changes in the overall quality of classification, while the fairness of the outcomes is vastly improved.
Ključne besede:fairness, boosting, machine learning, supervised learning
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Poslano v recenzijo:17.02.2023
Datum sprejetja članka:12.09.2023
Datum objave:25.11.2023
Založnik:Elsevier
Leto izida:2023
Št. strani:9 str.
Številčenje:Vol. 280, [article no.] 110999
PID:20.500.12556/DKUM-89064 Novo okno
UDK:004.8
COBISS.SI-ID:166874115 Novo okno
DOI:10.1016/j.knosys.2023.110999 Novo okno
ISSN pri članku:1872-7409
Avtorske pravice:© 2023 The Author(s).
Datum objave v DKUM:11.06.2024
Število ogledov:147
Število prenosov:23
Metapodatki:XML DC-XML DC-RDF
Področja:Ostalo
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Knowledge-based systems
Založnik:Elsevier BV
ISSN:1872-7409
COBISS.SI-ID:152275459 Novo okno

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0057-2018
Naslov:Informacijski sistemi

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:pravičnost, strojno učenje, nadzorovano učenje


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici