Naslov: | FairBoost: Boosting supervised learning for learning on multiple sensitive features |
---|
Avtorji: | ID Colakovic, Ivona (Avtor) ID Karakatič, Sašo (Avtor) |
Datoteke: | 1-s2.0-S0950705123007499-main.pdf (1,70 MB) MD5: 370A93F96E550A132F708A58DDFDDF6D
https://www.sciencedirect.com/science/article/pii/S0950705123007499?via%3Dihub
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Članek v reviji |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | FERI - Fakulteta za elektrotehniko, računalništvo in informatiko
|
---|
Opis: | The vast majority of machine learning research focuses on improving the correctness of the outcomes (i.e., accuracy, error-rate, and other metrics). However, the negative impact of machine learning outcomes can be substantial if the consequences marginalize certain groups of data, especially if certain groups of people are the ones being discriminated against. Thus, recent papers try to tackle the unfair treatment of certain groups of data (humans), but mostly focus on only one sensitive feature with binary values. In this paper, we propose an ensemble boosting FairBoost that takes into consideration fairness as well as accuracy to mitigate unfairness in classification tasks during the model training process. This method tries to close the gap between proposed approaches and real-world applications, where there is often more than one sensitive feature that contains multiple categories. The proposed approach checks the bias and corrects it through the iteration of building the boosted ensemble. The proposed FairBoost is tested within the experimental setting and compared to similar existing algorithms. The results on different datasets and settings show no significant changes in the overall quality of classification, while the fairness of the outcomes is vastly improved. |
---|
Ključne besede: | fairness, boosting, machine learning, supervised learning |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Poslano v recenzijo: | 17.02.2023 |
---|
Datum sprejetja članka: | 12.09.2023 |
---|
Datum objave: | 25.11.2023 |
---|
Založnik: | Elsevier |
---|
Leto izida: | 2023 |
---|
Št. strani: | 9 str. |
---|
Številčenje: | Vol. 280, [article no.] 110999 |
---|
PID: | 20.500.12556/DKUM-89064  |
---|
UDK: | 004.8 |
---|
COBISS.SI-ID: | 166874115  |
---|
DOI: | 10.1016/j.knosys.2023.110999  |
---|
ISSN pri članku: | 1872-7409 |
---|
Avtorske pravice: | © 2023 The Author(s). |
---|
Datum objave v DKUM: | 11.06.2024 |
---|
Število ogledov: | 147 |
---|
Število prenosov: | 23 |
---|
Metapodatki: |  |
---|
Področja: | Ostalo
|
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: |  |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |