| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Matematični model hibridnega sončnega sistema in optimizacija proizvodnje električne in toplotne energije : doktorska disertacija
Authors:ID Sredenšek, Klemen (Author)
ID Seme, Sebastijan (Mentor) More about this mentor... New window
Files:.pdf DOK_Sredensek_Klemen_2024.pdf (38,52 MB)
MD5: 572FB75528BC2147D36E7614945681A5
 
Language:Slovenian
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FE - Faculty of Energy Technology
Abstract:Doktorska disertacija obravnava matematično modeliranje hibridnega sončnega sistema in optimizacijo proizvodnje električne in toplotne energije. Hibridni sončni sistemi predstavljajo inovacijo na področju fotonapetostnih sistemov, saj delež sončnega sevanja, ki se pretvori v toplotno energijo na površini hibridnih sončnih modulov shrani v hranilnik toplotne energije. Z odvzemom toplotne energije se zmanjša temperatura hibridnih sončnih modulov in s tem poveča izkoristek pretvorbe sončne energije v električno energijo. Hibridni sončnih sistemi tako ne le proizvedejo več električne energije kot fotonapetostnih sistemi, ampak proizvedejo še dodaten delež toplotne energije. Matematični model hibridnega sončnega sistema, ki ga obravnava doktorska disertacija je razdeljen na tri podsisteme (električni in toplotni podsistem hibridnega sončnega modula ter toplotni podsistem hranilnika toplotne energije). Električni podsistem hibridnega sončnega modula je predstavljen z nadomestnim električnim vezjem dvo-diodnega modela sončne celice pri čemer so določeni električni parametri predstavljeni v odvisnosti od gostote moči sončnega sevanja in temperature sončne celice. Toplotna podsistema hibridnega sončnega modula in hranilnika toplotne energije sta opisana z diferencialnimi enačbami za prenos toplote. Za podrobnejši opis mehanizmov prenosa toplote je poleg toplotnih in mehanskih lastnosti materialov v toplotnem podsistemu hibridnega sončnega modula podan tudi natančen opis optičnih izgub, ki definirajo delež absorpcije, prepustnosti in odbojnosti svetlobe v odvisnosti od vpadnega kota sončnih žarkov. Rezultati matematičnega modela hibridnega sončnega sistema so ovrednoteni z meritvami na eksperimentalnem hibridnem sončnem sistemu in predstavljajo zelo visok nivo natančnosti v primerjavi z drugimi raziskavami. Za optimalno delovanje hibridnega sončnega sistema v smislu proizvodnje električne in toplotne energije je bila za iskanje nelinearnega in omejenega problema uporabljena stohastična metoda, imenovana diferenčna evolucija. Tovrstni pristop za iskanje maksimalne proizvodnje električne in/ali toplotne energije celotnega hibridnega sončnega sistema na podlagi spremembe masnega pretoka obtočnih črpalk še ni bil raziskan v nobeni literaturi.
Keywords:hibridni sončni sistem, diferenčna evolucija, električna energija, toplotna energija
Place of publishing:Maribor
Place of performance:Velenje
Publisher:[K. Sredenšek]
Year of publishing:2024
Number of pages:XXVIII, 194 str.
PID:20.500.12556/DKUM-87922 New window
UDC:[502.21:523.9+621.311]:519.876.5(043.3)
COBISS.SI-ID:202530563 New window
Publication date in DKUM:23.07.2024
Views:235
Downloads:48
Metadata:XML RDF-CHPDL DC-XML DC-RDF
Categories:FE
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:31.03.2024

Secondary language

Language:English
Title:Mathematical model of photovoltaic/thermal system and optimization of electrical and thermal energy
Abstract:The doctoral dissertation deals with the mathematical modeling of a photovoltaic/thermal system and the optimization of electrical and thermal energy production. Photovoltaic/thermal systems represent an innovation in the field of photovoltaic systems, as the portion of solar radiation that is converted into thermal energy on the surface of the photovoltaic/thermal modules is stored in a thermal energy storage tank. With the removal of thermal energy, the temperature of the photovoltaic/thermal modules decreases and thus increases the efficiency of the conversion of solar energy into electrical energy. Photovoltaic/thermal systems thus not only produce more electrical energy than photovoltaic systems, but also produce an additional share of thermal energy. The mathematical model of the photovoltaic/thermal system discussed in the doctoral dissertation is divided into three subsystems (the electrical and thermal subsystem of the photovoltaic/thermal module and the thermal subsystem of the thermal energy store tank). The electrical subsystem of the photovoltaic/thermal module is represented by an equivalent electric circuit of a double-diode solar cell model, where certain electrical parameters are represented as a function of the power density of solar radiation and the temperature of the solar cell. The thermal subsystems of the photovoltaic/thermal module and thermal energy storage tank are described by differential equations for heat transfer. For a more detailed description of the heat transfer mechanisms, in addition to the thermal and mechanical properties of the materials in the thermal subsystem of the hybrid solar module, a detailed description of the optical losses is also given, which define the proportion of absorption, transmittance and reflectance of light depending on the angle of incidence of the sun's rays. The results of the mathematical model of the photovoltaic/thermal system are evaluated with measurements on the experimental photovoltaic/thermal system and represent a very high level of accuracy compared to other research. A stochastic method called differential evolution was used to find the nonlinear and constrained problem for the optimal performance of the photovoltaic/thermal system in terms of electrical and thermal energy production. This kind of approach for finding the maximum production of electrical and/or thermal energy of the entire photovoltaic/thermal system based on the change in the mass flow of circulation pumps has not yet been investigated in any literature.
Keywords:photovoltaic/thermal system, differential evolution, electrical energy, thermal energy


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica