Naslov: | Optimizing smart manufacturing systems using digital twin |
---|
Avtorji: | ID Ojsteršek, Robert (Avtor) ID Javernik, Aljaž (Avtor) ID Buchmeister, Borut (Avtor) |
Datoteke: | APEM18-4_475-485.pdf (1,28 MB) MD5: DA91EF25DC6CAD0BDD3E6671131509F2
https://apem-journal.org/Archives/2023/Abstract-APEM18-4_475-485.html
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Članek v reviji |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | FS - Fakulteta za strojništvo
|
---|
Opis: | Presented paper investigates the application of digital twins for the optimisation of intelligent manufacturing systems and focuses on the comparison between simulation modelling results and real-world production conditions. A digital twin was created in the Simio software environment using a data-driven simulation model derived from a real-world production system. Running the digital twin in real time, which was displayed graphically, facilitated the analysis of key parameters, including the number of finished products, average flow time, workstation utilization and product quality. The discrepancies were attributed to the use of random distributions of input data in the dynamic digital twin, as opposed to the long-term measurements and averages in the real-world system. Despite the limitations in the case study, the results underline the financial justification and predictive capabilities of digital twins for optimising production systems. Real-time operation enables continuous evaluation and tracking of parameters and offers high benefits for intelligent production systems. The study emphasises the importance of accurate selection of input data and warns that even small deviations can lead to inaccurate results. Finally, the paper high-lights the role of digital twins in optimising production systems and argues for careful consideration of input data. It highlights the importance of analysing real-world production systems and creating efficient simulation models as a basis for digital twin solutions. The results encourage extending the research to different types of production, from job shop to mass production, in order to obtain a comprehensive optimisation perspective. |
---|
Ključne besede: | smart manufacturing, digital twin, optimisation, simulation modelling, Simio, case study |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Poslano v recenzijo: | 19.07.2023 |
---|
Datum sprejetja članka: | 20.12.2023 |
---|
Datum objave: | 28.12.2023 |
---|
Založnik: | Chair of Production Engineering (CPE), University of Maribor, Faculty of Mechanical Engineering |
---|
Leto izida: | 2023 |
---|
Št. strani: | str. 475-485 |
---|
Številčenje: | Vol. 18, no. 4 |
---|
PID: | 20.500.12556/DKUM-87708  |
---|
UDK: | 658.5:004.94 |
---|
COBISS.SI-ID: | 182000131  |
---|
DOI: | 10.14743/apem2023.4.486  |
---|
ISSN pri članku: | 1854-6250 |
---|
Datum objave v DKUM: | 25.03.2024 |
---|
Število ogledov: | 277 |
---|
Število prenosov: | 25 |
---|
Metapodatki: |  |
---|
Področja: | Ostalo
|
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: |  |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |