Naslov: | Accuracy is not enough: optimizing for a fault detection delay |
---|
Avtorji: | ID Šprogar, Matej (Avtor) ID Verber, Domen (Avtor) |
Datoteke: | AccuracyIsNotEnough23.pdf (478,93 KB) MD5: B863E205A9C82F493381E08681CF63A7
https://www.mdpi.com/2227-7390/11/15/3369
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Članek v reviji |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | FERI - Fakulteta za elektrotehniko, računalništvo in informatiko
|
---|
Opis: | This paper assesses the fault-detection capabilities of modern deep-learning models. It highlights that a naive deep-learning approach optimized for accuracy is unsuitable for learning fault-detection models from time-series data. Consequently, out-of-the-box deep-learning strategies may yield impressive accuracy results but are ill-equipped for real-world applications. The paper introduces a methodology for estimating fault-detection delays when no oracle information on fault occurrence time is available. Moreover, the paper presents a straightforward approach to implicitly achieve the objective of minimizing fault-detection delays. This approach involves using pseudo-multi-objective deep optimization with data windowing, which enables the utilization of standard deep-learning methods for fault detection and expanding their applicability. However, it does introduce an additional hyperparameter that needs careful tuning. The paper employs the Tennessee Eastman Process dataset as a case study to demonstrate its findings. The results effectively highlight the limitations of standard loss functions and emphasize the importance of incorporating fault-detection delays in evaluating and reporting performance. In our study, the pseudo-multi-objective optimization could reach a fault-detection accuracy of 95% in just a fifth of the time it takes the best naive approach to do so. |
---|
Ključne besede: | artificial neural networks, deep learning, fault detection, accuracy, multi-objective optimization |
---|
Status publikacije: | Objavljeno |
---|
Verzija publikacije: | Objavljena publikacija |
---|
Poslano v recenzijo: | 29.06.2023 |
---|
Datum sprejetja članka: | 31.07.2023 |
---|
Datum objave: | 01.08.2023 |
---|
Založnik: | MDPI |
---|
Leto izida: | 2023 |
---|
Št. strani: | 18 str. |
---|
Številčenje: | Vol. 11, no. 15, [Article no.] 3396 |
---|
PID: | 20.500.12556/DKUM-86403  |
---|
UDK: | 004.8 |
---|
COBISS.SI-ID: | 160904707  |
---|
DOI: | 10.3390/math11153369  |
---|
ISSN pri članku: | 2227-7390 |
---|
Avtorske pravice: | © 2023 by the authors |
---|
Datum objave v DKUM: | 30.11.2023 |
---|
Število ogledov: | 363 |
---|
Število prenosov: | 27 |
---|
Metapodatki: |  |
---|
Področja: | Ostalo
|
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: |  |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |