| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Razvoj materialov z aktivnim kisikom za hitrejše celjenje ran : magistrsko delo
Authors:ID Atelšek Hozjan, Nika (Author)
ID Novak, Zoran (Mentor) More about this mentor... New window
ID Horvat, Gabrijela (Comentor)
Files:.pdf MAG_Atelsek_Hozjan_Nika_2023.pdf (4,25 MB)
MD5: FAB674DA262E31DF4E14976E115987F0
 
Language:Slovenian
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FKKT - Faculty of Chemistry and Chemical Engineering
Abstract:Magistrsko delo predstavlja sintezo, razvoj in karakterizacijo do sedaj še neobstoječih biorazgradljivih materialov - aerogelov z aktivnim kisikom za namene hitrejšega celjenja ran. Kot vhodna materiala smo uporabili polisaharid ksantan in biopolimer polilaktično kislino (PLA), ki sta biokompatibilna in cenovno dostopna. Ksantan služi kot osnovni material, ki enkapsulira aktivne učinkovine za namene kontroliranega sproščanja, medtem ko PLA izboljša mehanske lastnosti našega materiala. V sklopu našega raziskovalnega dela smo po sol-gel postopku s kombiniranjem PLA v etil laktatu ter ksantana v vodi pripravili kompozitne hidrogele. S superkritičnim sušenjem smo jih pretvorili v aerogele in okarakterizirali s plinsko adsorpcijo. S tem smo določili velikost specifičnih površin (BET), ki so dosegle vrednosti do 396 m2/g, ter povprečno velikosto in prostornino por v mezoporoznem območju. Izvedli smo tudi termično analizo z DSC/TGA, test nabrekanja in stabilnosti ter z njimi ocenili termično stabilnost in lastnosti razpada materialov. Rezultati so pokazali, da je kombinacija ksantana in PLA podaljšala stabilnost materiala v simulirani telesni tekočini (SBF) tudi do 72 ur. Materiali z večjo vsebnostjo PLA so absorbirali SBF do 67 kratnika svoje mase, kar je najverjetneje posledica boljše stabilnosti v SBF. Sestavo aerogelov in s tem prisotnost posameznih komponent smo potrdili z analizo FT IR. Glede na rezultate karakterizacije smo izbrali dva materiala z najobetavnejšimi lastnostmi, ter v njiju vključili učinkovini, ki ob stiku z rano generirata kisik, ter zdravilno učinkovino deksametazon. Sproščanje kisika iz materiala smo določili s standardno metodo izpodrivanja vode, pri kateri je bila količina izpodrinjene vode neposredno sorazmerna količini nastalega kisika. Meritve smo izvajali 48 ur, rezultati pa so pokazali, da je material sproščal kisik v celotnem časovnem intervalu. Testirali smo tudi sproščanje deksametazona v SBF, ki je bilo uspešno v primeru obeh impregniranih aerogelov. Nazadnje smo preverili antimikrobno delovanje materialov proti bakterijam Escherichia coli in Staphylococcus aureus. Oba aerogela sta inhibirala rast bakterij in s tem izkazala antimikrobno učinkovitost.
Keywords:aerogel, aktivni kisik, biomaterial, celjenje kroničnih ran, kontrolirano sproščanje
Place of publishing:Maribor
Place of performance:Maribor
Publisher:[N. Atelšek Hozjan]
Year of publishing:2023
Number of pages:1 spletni vir (1 datoteka PDF (XI, 67 f.))
PID:20.500.12556/DKUM-85297 New window
UDC:544.774.2:[604.4:615.33](043.2)
COBISS.SI-ID:170247939 New window
Publication date in DKUM:18.09.2023
Views:487
Downloads:219
Metadata:XML DC-XML DC-RDF
Categories:KTFMB - FKKT
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY-SA 4.0, Creative Commons Attribution-ShareAlike 4.0 International
Link:http://creativecommons.org/licenses/by-sa/4.0/
Description:This Creative Commons license is very similar to the regular Attribution license, but requires the release of all derivative works under this same license.
Licensing start date:24.08.2023

Secondary language

Language:English
Title:Development of oxygen-releasing materials for wound healing
Abstract:This master thesis presents the first synthesis, development, and characterization of biodegradable materials - aerogels with active oxygen for faster wound healing. The natural polysaccharide xanthan gum and the biopolymer polylactic acid (PLA) were selected as precursor materials for the preparation of aerogels. Xanthan gum served as a matrix material that encapsulated the active ingredients for controlled-release, while PLA improved the mechanical properties of our material. As part of our research, we prepared hybrid hydrogels by a sol-gel process combining PLA in ethyl lactate and xanthan gum in water. They were converted into aerogels by supercritical drying and characterized by gas adsorption. This was used to determine their specific surface areas (BET), which reached values of up to 396 m2/g, and to determine the average pore size and pore volume in the mesoporous region. Thermal analysis with DSC/TGA, swelling, and stability tests were also performed to evaluate the thermal stability and structural integrity of aerogels. The results showed that the combination of xanthan gum and PLA extended the stability of the material in simulated body fluid (SBF) for up to 72 hours. Materials with higher PLA content absorbed up to 67 times their weight and showed a very high fluid absorption capacity, likely due to better stability in SBF. The composition of the aerogels and thus the presence of individual components was confirmed by FT-IR analysis. Based on the characterization results, we selected two materials with the most promising properties, added oxygen-generating agents, and impregnated them with dexamethasone. Oxygen release from the materials was determined by the standard water displacement method, and the amount of water displaced was directly proportional to the amount of oxygen produced. Measurements were performed for 48 hours, and the results showed that the materials released oxygen throughout the period. The drug release profile in SBF was also determined and showed that impregnation was successful for both aerogels. Finally, the antimicrobial activity of the materials was tested against bacteria Esherichia coli and Staphylococcus aureus. Both aerogels successfully inhibited bacterial growth, demonstrating antimicrobial activity.
Keywords:aerogel, active oxygen, biomaterial, chronic wound healing, controlled release


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica