| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Izpis gradiva Pomoč

Naslov:Scoping review on the multimodal classification of depression and experimental study on existing multimodal models
Avtorji:ID Arioz, Umut (Avtor)
ID Smrke, Urška (Avtor)
ID Plohl, Nejc (Avtor)
ID Mlakar, Izidor (Avtor)
Datoteke:.pdf Scoping_Review_on_the_Multimodal_Cl-Arioz-2022.pdf (1,43 MB)
MD5: 52B9B3CBED363CE1CF62F65AB8A23866
 
URL https://www.mdpi.com/2075-4418/12/11/2683
 
Jezik:Angleški jezik
Vrsta gradiva:Članek v reviji
Tipologija:1.02 - Pregledni znanstveni članek
Organizacija:FERI - Fakulteta za elektrotehniko, računalništvo in informatiko
FF - Filozofska fakulteta
Opis:Depression is a prevalent comorbidity in patients with severe physical disorders, such as cancer, stroke, and coronary diseases. Although it can significantly impact the course of the primary disease, the signs of depression are often underestimated and overlooked. The aim of this paper was to review algorithms for the automatic, uniform, and multimodal classification of signs of depression from human conversations and to evaluate their accuracy. For the scoping review, the PRISMA guidelines for scoping reviews were followed. In the scoping review, the search yielded 1095 papers, out of which 20 papers (8.26%) included more than two modalities, and 3 of those papers provided codes. Within the scope of this review, supported vector machine (SVM), random forest (RF), and long short-term memory network (LSTM; with gated and non-gated recurrent units) models, as well as different combinations of features, were identified as the most widely researched techniques. We tested the models using the DAIC-WOZ dataset (original training dataset) and using the SymptomMedia dataset to further assess their reliability and dependency on the nature of the training datasets. The best performance was obtained by the LSTM with gated recurrent units (F1-score of 0.64 for the DAIC-WOZ dataset). However, with a drop to an F1-score of 0.56 for the SymptomMedia dataset, the method also appears to be the most data-dependent.
Ključne besede:multimodal depression classification, scoping review, real-world data, mental health
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Datum objave:01.01.2022
Leto izida:2022
Št. strani:26 str.
Številčenje:Vol. 12, iss. 11
PID:20.500.12556/DKUM-84964-cb4adfeb-53a8-758a-38eb-8194cef86aa5 Novo okno
UDK:159.92
COBISS.SI-ID:128320003 Novo okno
DOI:10.3390/diagnostics12112683 Novo okno
ISSN pri članku:2075-4418
Datum objave v DKUM:11.08.2023
Število ogledov:529
Število prenosov:72
Metapodatki:XML DC-XML DC-RDF
Področja:Ostalo
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Diagnostics
Skrajšan naslov:Diagnostics
Založnik:MDPI AG
ISSN:2075-4418
COBISS.SI-ID:519963673 Novo okno

Gradivo je financirano iz projekta

Financer:EC - European Commission
Program financ.:H2020
Številka projekta:875406
Naslov:Patients-centered SurvivorShIp care plan after Cancer treatments based on Big Data and Artificial Intelligence technologies
Akronim:PERSIST

Financer:EC - European Commission
Program financ.:H2020
Številka projekta:101016834
Naslov:Hospital Smart development based on AI
Akronim:HosmartAI

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J5-3120
Naslov:Opolnomočenje starejših: Samoregulacijski mehanizmi in podpora digitalne tehnologije v doseganju višje kakovosti življenja

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:multimodalna klasifikacija, pregled, realni podatki, psihično zdravje


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici