| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Sinteza trajnostnih in regenerativnih oskrbovalnih mrež na osnovi matematičnega programiranja za postopno doseganje ogljične nevtralnosti : doktorska disertacija
Authors:ID Potrč, Sanja (Author)
ID Kravanja, Zdravko (Mentor) More about this mentor... New window
Files:.pdf DOK_Potrc_Sanja_2023.pdf (11,23 MB)
MD5: 0AF7A904F2B1DE1AD4D39D5DACAC6758
 
Language:Slovenian
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FKKT - Faculty of Chemistry and Chemical Engineering
Abstract:Blaženje podnebnih sprememb je eden največjih izzivov sodobne družbe, ki je tesno povezan z vprašanjem energetskega sistema v prihodnosti. Zaradi vse večjega povpraševanja po energiji in s tem povezanega vpliva na okolje in človeštvo je potrebno preoblikovanje energetskega sistema in nadaljnji razvoj v smeri učinkovitejše proizvodnje, dobave in rabe energije. Sedanji ukrepi za doseganje ogljične nevtralnosti in omejitve globalnega segrevanja pod 2 °C glede na predindustrijsko raven so prepočasni in nezadostni, zato bodo za dosego tega cilja potrebna velika prizadevanja na globalni ravni. Proizvodne sisteme je treba sintetizirati v smeri trajnostnega in regenerativnega razvoja, da bodo prilagodljivi na podnebne spremembe in uravnoteženi ter da bodo ohranjali biotsko raznovrstnost za zadovoljitev potreb človeštva v prihodnosti z ohranjanjem celovitosti narave. V doktorski disertaciji prikazujemo razvito metodologijo za celovito sintezo in optimizacijo obsežnih energetskih, (bio)kemijskih in kmetijskih oskrbovalnih mrež za prehod na trajnostni energetski sistem in postopno doseganje ogljične nevtralnosti v Evropski uniji do leta 2050. Hkratno reševanje teh sistemov je možno le z uporabo pristopa matematičnega programiranja, ki zagotavlja tudi dopustnost optimalnih rezultatov za dani niz pogojev. Sinteza takšnih obsežnih oskrbovalnih mrež vsebuje ogromno število zelo kompleksnih interakcij, zato smo pri modeliranju uporabili številne tehnike za zmanjšanje velikosti modela in učinkovite dekompozicijske tehnike. Razvili smo metodologijo za dinamično sintezo oskrbovalnih mrež z biogorivi, električno energijo in toploto iz obnovljivih virov energije ob upoštevanju vseh treh stebrov trajnostnega razvoja – ekonomskega, okoljskega in socialnega. Za povečanje učinkovitosti prihodnjega energetskega sistema in izkoriščanja sinergističnih učinkov povezovanja med sektorji smo matematični model dodelali z medsektorsko integracijo in vključitvijo tako kratkoročnih kot dolgoročnih hranilnikov energije. Doktorska disertacija prikazuje tudi razvoj koncepta regenerativnih oskrbovalnih mrež za postopen prehod na samoobnovitveni (regenerativni) energetski sistem in doseganje letnih negativnih neto emisij oziroma preseganje ogljične nevtralnosti. V ta namen smo razvili napovedovalni model za določanje samoobnovitvene zmožnosti Zemlje glede zajemanja CO2 in koncentracije CO2 v atmosferi. Rezultati optimizacije oskrbovalnih mrež z biogorivi kažejo, da bi z dodatno proizvodnjo biogoriv lahko že do leta 2030 dosegli bistveno večji delež obnovljivih virov energije v prometu, kot je cilj direktive EU, vendar bo za konkurenčnost proizvodnje biogoriv v nekaterih državah ključnega pomena, da bodo podjetja prejela dodatne subvencije. Ugotovili smo tudi, da optimizacija oskrbovalnih mrež na širši, kontinentalni ravni, privede do bistveno boljše trajnostne in ekonomske neto sedanje vrednosti kot v primeru optimizacije na ravni posameznih držav. Rezultati prav tako kažejo, da bo imela medsektorska integracija, predvsem elektrifikacija prometnega in stanovanjskega sektorja ter storitvenih dejavnosti, velik vpliv na izboljšanje učinkovitosti sistema in pospešitev prehoda na trajnostno energetsko prihodnost. Prav tako je pri načrtovanju prihodnjega energetskega sistema pomembno, da ne stremimo le k doseganju ogljične nevtralnosti, temveč k regenerativnemu energetskemu sistemu z negativnimi neto letnimi emisijami, sicer koncentracija CO2 v atmosferi ne bo začela padati, povprečna temperatura pa bo še naprej naraščala. Dobljeni rezultati predstavljajo celoten energetski prehod z izbiro ustreznih tehnologij, lokacij in surovin za doseganje regenerativnega energetskega sistema, ki je sposoben samoobnavljanja. Razvoj novih konceptov in metodologij za sintezo in optimizacijo širših sistemov trajnostnih in regenerativnih oskrbovalnih mrež na osnovi matematičnega programiranja je zelo pomemben za načrtovanje prihodnjega proizvodnega in energetskega sistema.
Keywords:matematično programiranje, oskrbovalne mreže, sinteza oskrbovalnih mrež, trajnostni razvoj, regenerativni razvoj, energetski prehod, ogljična nevtralnost
Place of publishing:Maribor
Place of performance:Maribor
Publisher:[S. Potrč]
Year of publishing:2023
Number of pages:XIV, 133 str.
PID:20.500.12556/DKUM-84293 New window
UDC:504.5:551.583(043.3)
COBISS.SI-ID:167925763 New window
Publication date in DKUM:11.10.2023
Views:562
Downloads:144
Metadata:XML DC-XML DC-RDF
Categories:KTFMB - FKKT
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:17.05.2023

Secondary language

Language:English
Title:Synthesis of sustainable and regenerative supply networks based on mathematical programming for the gradual transition to carbon neutrality
Abstract:Mitigating climate change is one of the greatest challenges facing modern society and is closely linked to the question of the future energy system. Increasing energy demand and the associated impacts on the environment and humanity require a transformation of the energy system and further development towards more efficient energy production, supply, and use. Current measures to achieve carbon neutrality and limit global warming to below 2 °C are too slow and insufficient, and will require major global efforts to achieve this goal. Production systems must be designed in a way that are sustainable, resilient to climate change, and equitable to maintain biodiversity to meet future human needs and preserve the integrity of nature. This dissertation presents a methodology for the comprehensive synthesis and optimization of large-scale energy, (bio)chemical, and agricultural supply networks for the transition to a sustainable energy system and the gradual achievement of carbon neutrality in the European Union by 2050. The simultaneous solving of these systems is only possible by applying a mathematical programming approach that also ensures the optimality of the results for a given set of conditions. The synthesis of such large-scale supply networks involves a huge number of highly complex interactions, so a number of model size reduction techniques and efficient decomposition techniques have been used in the modelling process. A methodology for the dynamic synthesis of biofuel, renewable electricity and heat supply networks has been developed that takes into account all three pillars of sustainable development – economic, environmental, and social. In order to increase the efficiency of the future energy system and to exploit the synergistic effects, the mathematical model was extended to include cross-sectoral energy integration as well as short-term and long-term energy storage. The dissertation also demonstrates the development of a regenerative supply network concept for the gradual transition towards a self-regenerating energy system and the achievement of annual net negative emissions or exceeding carbon neutrality. For this purpose, we have developed a predictive model to determine the Earth's self-regenerative capacity in terms of natural CO2 sequestration and atmospheric CO2 concentration. The results of the optimization of biofuel supply networks indicate that additional biofuel production could already achieve a significantly higher share of renewables in transport by 2030 than envisaged in the EU directive, but additional subsidies for companies will be crucial for the competitiveness of biofuel production in some countries. We also found that optimising supply networks on a broader, continental scale leads to significantly better sustainability and economic net present value than optimization on a country basis. The results also show that cross-sectoral integration, particularly electrification of the transportation, residential, and service sectors, will have a major impact on improving system efficiency and accelerating the transition to a sustainable energy future. In planning the future energy system, it is also important that we aim not only for achieving carbon neutrality, but also for a regenerative energy system design with negative net annual emissions, otherwise the CO2 concentration in the atmosphere will not start to decrease and the average temperature will continue to rise. The results obtained represent a complete energy transition with the selection of appropriate technologies, locations and raw materials to achieve a regenerative energy system with the ability to self-regenerate. The development of new concepts and methodologies for synthesising and optimising more comprehensive systems of sustainable and regenerative supply networks based on mathematical programming is of great importance for planning the future production and energy system.
Keywords:mathematical programming, supply network, supply network synthesis, sustainable development, regenerative development, energy transition, carbon neutrality


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica