| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Meje za mavrična dominantna števila : magistrsko delo
Authors:ID Zelko, Klavdija (Author)
ID Brešar, Boštjan (Mentor) More about this mentor... New window
Files:.pdf EMAG_Zelko_Klavdija_2022.pdf (3,91 MB)
MD5: 0BF2D83325EF40373BC4B9C1BC1EE5FB
 
Language:Slovenian
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FNM - Faculty of Natural Sciences and Mathematics
Abstract:Mavrično dominacijo na grafu $G$, z (neprazno) množico vozlišč in povezav ter množico s $k$ barvami, opišemo kot funkcijo $f$, ki vsako vozlišče označi s poljubno podmnožico barv tako, da imajo vsa tista vozlišča, ki jim je prirejena prazna množica, v svoji soseščini vseh $k$ barv. Funkciji $f$ tedaj pravimo $k$-mavrična dominantna funkcija grafa $G$. Vsota moči vseh oznak na vozliščih je vrednost $k$-mavrično dominantne funkcije. Najmanjša vrednost izmed vseh takih funkcij na grafu $G$ se imenuje $k$-mavrično dominantno število grafa $G$. V magistrskem delu podamo nekaj točnih vrednosti in zgornjih mej za $k$-mavrična dominantna števila. Večji poudarek damo na meje za 2- in 3-mavrično dominantna števila. Dokažemo dve splošni zgornji meji 2-mavrično dominantnega števila ter opišemo meje za 3-mavrično dominantna števila. Na koncu dela sledijo meje za $k$-mavrično dominantna števila, za katera je $k > 3$. V nekaterih primerih opišemo družine grafov, ki dosežejo enakost meje in jih dokažemo.
Keywords:graf, dominantno število, mavrična dominantna funkcija, mavrično dominantno število
Place of publishing:Maribor
Place of performance:Maribor
Publisher:[K. Zelko]
Year of publishing:2023
Number of pages:X, 36 f.
PID:20.500.12556/DKUM-83575 New window
UDC:519.17(043.2)
COBISS.SI-ID:140400387 New window
Publication date in DKUM:02.02.2023
Views:766
Downloads:55
Metadata:XML DC-XML DC-RDF
Categories:FNM
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:29.12.2022

Secondary language

Language:English
Title:Bounds on rainbow domination numbers : na študijskem programu enovitega magistrskega programa Izobraževalna matematika (dvopredmetna)
Abstract:Rainbow domination of a graph $G$, with a (non-empty) set of vertices and edges as well as a set with $k$ colors, is described as a function $f$, which assigns an arbitrary subset of colors to the vertices in such a way that for every vertex to which the empty set is assigned all $k$ colors appear in its neighbourhood. The corresponding function $f$ is a $k$-rainbow dominating function of the graph $G$. The sum of all the labels on the vertices is the value of the $k$-rainbow dominating function. The smallest value of all such functions on a graph $G$ is called the $k$-rainbow domination number of $G$. In the thesis, we give some exact values and upper bounds for $k$-rainbow domination numbers. More emphasis is placed on the bounds for 2- and 3-rainbow domination numbers. We prove two general upper bounds for 2-rainbow domination numbers and describe the bounds for 3-rainbow domination numbers. Finally, we present some bounds for $k$-rainbow domination numbers, where $k > 3$. In some cases we describe the families of graphs that achieve equality in the corresponding bound and provide necessary proofs.
Keywords:graph, domination, rainbow domination function, rainbow domination number


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica