Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
COBISS
Ekonomsko poslovna fakulteta
Fakulteta za kmetijstvo
Fakulteta za logistiko
Fakulteta za organizacijske vede
Fakulteta za varnostne vede
Fakulteta za zdravstvene vede
Knjižnica tehniških fakultet
Medicinska fakulteta
Miklošičeva knjižnica - FPNM
Pravna fakulteta
Univerzitetna knjižnica Maribor
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
Statistics
Login
First page
>
Show document
Show document
Title:
Algoritmi gručenja v okolju jamovi in programskem jeziku r
Authors:
ID
Šuster, Tine
(Author)
ID
Karakatič, Sašo
(Mentor)
More about this mentor...
Files:
UN_Suster_Tine_2022.pdf
(1,47 MB)
MD5: EAF4D418927733961E9C4BB57CCD52E3
Language:
Slovenian
Work type:
Bachelor thesis/paper (mb11)
Typology:
2.11 - Undergraduate Thesis
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
Gručenje je uporabna tehnika strojnega učenja. Velika količina podatkov, ki so na voljo odpira mnogo možnosti za iskanje skritega znanja. Ti pogoji ponujajo priložnost razvoja odprtokodnih orodij za uporabo strojnega učenja in ga tako približati več uporabnikom. Opisali smo osnove strojnega učenja in podrobneje analizirali nekaj algoritmov gručenja. V programskem jeziku R smo razvili vtičnik za odprtokodno okolje Jamovi. Končni izdelek podpira tri pogosto uporabljane algoritme gručenja in omogoča uporabniko enostavno gručenje nad podatki prav tako pa oceno pridobljenih rezultatov. Uporabniško izkušnjo smo izboljšali tudi z grafičnim prikazom podatkov.
Keywords:
gručenje
,
analiza
,
strojno učenje
,
vtičnik
Year of publishing:
2022
Source:
Maribor
PID:
20.500.12556/DKUM-82989
Publication date in DKUM:
13.01.2023
Views:
145
Downloads:
23
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Average score:
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
AddThis uses cookies that require your consent.
Edit consent...
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Licences
License:
CC BY 4.0, Creative Commons Attribution 4.0 International
Link:
http://creativecommons.org/licenses/by/4.0/
Description:
This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Licensing start date:
12.09.2022
Secondary language
Language:
English
Title:
Clustering algorithms in the jamovi environment and the r programming language
Abstract:
Clustering is a useful machine learning technique. The large amount of data available opens up many possibilities for finding hidden knowledge. These conditions offer the possibility of developing open source tools for using machine learning and thus bringing it closer to more users. We described the basics of machine learning and analyzed some clustering algorithms in more detail. In the programming language R, we developed a plug-in for the Jamovi open source environment. The final product supports three commonly used clustering algorithms and allows the user to easily analyze the data, aswell as enabling the assessment of the obtained results. We also improved the user experience with graphical display of the data.
Keywords:
clustering
,
analysis
,
machine learning
,
plugin
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back