| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Simetrijske grupe končnih vzorcev
Authors:ID Mencinger, Matej (Author)
ID Zalar, Borut (Reviewer)
ID Žerovnik, Janez (Reviewer)
ID Tibaut, Andrej (Technical editor)
ID Perša, Jan (Technical editor)
Files:URL https://press.um.si/index.php/ump/catalog/book/614
 
.pdf RAZ_Mencinger_Matej_2021.pdf (54,54 MB)
MD5: 813ABC14AF0CA045E6BDC3F8D52D8AAF
PID: 20.500.12556/dkum/4f8fb2b7-dfd2-4f11-bb67-5ee4cb31a8f0
 
Language:Slovenian
Work type:Unknown
Organization:FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
UZUM - University of Maribor Press
Abstract:Končni vzorci so najprej definirani intuitivno, kasneje pa še eksaktno (matematično). Simetrije končnih vzorcev so definirane s pomočjo izometrij ravnine. Obravnavani so štirje osnovni razredi izometrij ravnine: zrcaljenje, rotacija, translacija ter drsno zrcaljenje. V klasifikacijskem izreku je dokazano, da vsaka izometrija spada v enega od osnovnih štirih razredov. Pri obravnavi vektorjev in matrik se omejimo na ravnino in trirazsežni vektorski prostor. Dokazano je, da izometrijam ravnine s fiksno točko pripadajo natanko ortogonalne matrike. V poglavju o grupah so obravnavani pojmi: (pod)grupa, red grupe, izomorfizem grup ter generatorji grupe. Glavni rezultat je klasifikacija simetrijskih grup končnih vzorcev v ciklične ali diedrske, kar danes imenujemo Leonardov izrek. Podano je tudi nekaj informacij o zgodovinski dobi, v kateri je deloval Leonardo da Vinci in nekaterih povezavah med njegovim delom in matematiko. Učbenik je namenjen študentom arhitekture in vsebuje številne primere, rešene naloge ter obsežno slikovno gradivo.
Keywords:izometrija ravnine, končni vzorec, simetrija, končna grupa, Leonardov izrek
Place of publishing:Maribor
Place of performance:Maribor
Publisher:Univerza v Mariboru, Univerzitetna založba
Year of publishing:2021
Year of performance:2021
PID:20.500.12556/DKUM-81064 New window
ISBN:978-961-286-536-8
UDC:512.54(075.8)(0.034.2)
COBISS.SI-ID:82281475 New window
DOI:10.18690/978-961-286-536-8 New window
Publication date in DKUM:21.12.2021
Views:1248
Downloads:350
Metadata:XML DC-XML DC-RDF
Categories:Misc.
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Licensing start date:21.12.2021

Secondary language

Language:English
Title:Symmetry Groups of Finite Patterns
Abstract:Finite patterns are defined first intuitively and then also mathematically. Symmetries of finite patterns are defined based on planar isometries. Four basic types of planar isometries (mirror reflection, rotation, translation and glide reflection) are considered. In the classification theorem for planar isometries it is proven that every isometry coincides with one of the four basic planar isometries. Vectors and matrices are limited to two- and three-dimensional (vector) space. It is proven that every planar isometry with a fixed point is associated with an orthogonal matrix. The chapter on groups includes the information on (sub)groups, order of the group, isomorphism of groups and group generators. The main result is the classification of the symmetry groups of finite patterns into cyclic and dihedral, which is nowadays known as Leonardo’s theorem. Finally, Leonardo’s time and work is described. The textbook is written for students of the architecture and includes several examples, figures and solved exercises.
Keywords:planar isometry, finite pattern, symmetry, finite group, Leonardo’s theorem


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica