| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document

Title:Razvoj sistema detekcije objektov za avtonomna vozila z uporabo tehnologije LiDAR : magistrsko delo
Authors:Fekonja, Peter (Author)
Rojc, Matej (Mentor) More about this mentor... New window
Files:.pdf MAG_Fekonja_Peter_2021.pdf (8,28 MB)
MD5: 93B52B8BB225695AD65CB983AAF9DBDF
 
Language:Slovenian
Work type:Master's thesis/paper (mb22)
Typology:2.09 - Master's Thesis
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:V magistrskem delu je predstavljena uporaba LiDAR sistemov in globokega učenja v kontekstu avtonomnih vozil. Delo vključuje teoretično in eksperimentalno delo. V teoretičnem delu predstavimo aktualne rešitve za razvoj LiDAR sistemov, najpogosteje uporabljene pristope za globoko učenje in metode obdelave LiDAR točkovnih oblakov z nevronskimi mrežami. Prav tako so predstavljeni aktualni senzorski sistemi na trenutni generaciji avtonomnih vozil, podatkovne baze namenjene učenju nevronskih mrež za uporabo v avtonomnih vozilih in trenutna generacija nizkocenovnih LiDAR senzorjev. V eksperimentalnem delu naloge je podrobno predstavljena zmogljivost Livox Mid-40 LiDAR sistema ter njegova uporaba v lastni rešitvi za detekcijo objektov v prometu. Podrobno je predstavljen razvoj lastne nevronske mreže kot klasifikatorja, razvoj lastnega pristopa za lokalizacijo objektov in primerjava naših rešitev z že obstoječimi pristopi. Naš pristop k lokalizaciji objektov je dosegal boljše ali primerljive rezultate z obstoječimi metodami, v kombinaciji z našim klasifikatorjem pa bistveno slabše rezultate od trenutnih enovitih modelov nevronskih mrež s prenosom znanja.
Keywords:LiDAR, Livox Mid-40, avtonomna vozila, globoko učenje, klasifikacija, lokalizacija
Year of publishing:2021
Place of performance:Maribor
Publisher:[P. Fekonja]
Number of pages:XVII, 228 f.
Source:Maribor
UDC:004.032.26:004.6(043.2)
COBISS_ID:54864899 New window
NUK URN:URN:SI:UM:DK:BK8NQRSW
Views:274
Downloads:24
Metadata:XML RDF-CHPDL DC-XML DC-RDF
Categories:KTFMB - FERI
:
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY-SA 4.0, Creative Commons Attribution-ShareAlike 4.0 International
Link:http://creativecommons.org/licenses/by-sa/4.0/
Description:This Creative Commons license is very similar to the regular Attribution license, but requires the release of all derivative works under this same license.
Licensing start date:07.02.2021

Secondary language

Language:English
Title:Development of object detection system for autonomous vehicles by using LiDAR technology
Abstract:In the master's thesis we present the use of LiDAR systems and deep learning in the context of autonomous vehicles. The thesis includes theoretical and experimental parts. In the theoretical part, we present the state-of-the-art solutions for development of LiDAR systems, the most commonly used approaches to deep learning and the methods used to process LiDAR point clouds using neural networks. We also present the current sensor systems, used on the current generation of autonomous vehicles, databases targeted towards neural networks for autonomous vehicle use and the current generation of low-cost LiDAR sensors. In the experimental part, we give a detailed presentation of the capabilities of the Livox Mid-40 LiDAR system and its use in our own solution to object detection in traffic. We also show, in detail, the development of our own neural network for use as a classifier, the development of our own approach to object localization and the comparison of our solutions with existing approaches. Our object localization approach achieved similar or better results than those of existing methods, but, in conjunction with our classifier, achieved significantly worse results than current end-to-end neural network models that use transfer learning.
Keywords:LiDAR, Livox Mid-40, autonomous vehicles, deep learning, classification, localization


Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica