| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Naslov: Monte Carlo simulation of air resistance on an ellipsoid in motion ID Bukina, Veronika (Avtor)ID Ambrožič, Milan (Mentor) Več o mentorju... MAG_Bukina_Veronika_2021.pdf (1,64 MB)MD5: 5B8947DFC2E00C7FBEDC0947A02BB6FAPID: 20.500.12556/dkum/c47a49ba-376f-414e-91c5-39590e8d1a4a Angleški jezik Magistrsko delo/naloga 2.09 - Magistrsko delo FNM - Fakulteta za naravoslovje in matematiko The main goal of the master's thesis was the analysis of air resistance on the body in motion in a model that does not require solving the Navier-Stokes equations, but works on the basis of mechanics and statistical physics. The model was a Monte Carlo (MC) simulation of the motion of ideal gas molecules in a closed container in which a body was placed, moving along one of the axes. For the most part of calculations, the approach was used when the body was fixed in the middle of the simulation cell, and one of the components of the molecular velocity had an additional term that simulated the flow, as if the body was moving at this speed in the opposite direction. First of all, a linear dependence of the drag force on speed was found for low flow speed for a flat plate, which was predicted by linear drag law. For high molecular flow rates, the quadratic dependence predicted by the Bernoulli equation was clearly observed. The results of calculating the corresponding resistivity coefficients for the flat plate were in agreement with the analytical values for both regimes of speeds. By analogy, a simulation was made for a spherical body, which also demonstrated a strong quadratic dependence at high speeds and the drag coefficient value is approximately equal to the analytical one. In the following, we studied systematically ellipsoids with circular cross-section, where we varied the ratio between semiaxes in the direction of motion and perpendicular direction, respectively. The results for the ellipsoid showed that the drag coefficient value is maximum for a flat plate (a limiting case of an ellipsoid, when the semiaxis in the direction of motion tends to 0) and decreases with stretching of the body along the flow axis. When the Maxwell distribution of molecular speeds that was mainly used was replaced with uniform Root-Mean-Square (RMS) speed the results for drag coefficient were slightly different. Air resistance, drag force, quadratic drag law, drag coefficient, Monte Carlo (MC) simulation, Maxwell distribution. Maribor [V. Bukina] 2021 20.500.12556/DKUM-78565 533.6.013.12(043.2) 76086275 URN:SI:UM:DK:U3HMIEJ9 13.10.2021 701 41 FNM Kopiraj citat

Skupna ocena: (0 glasov) Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.

Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

## Licence

Licenca: CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna http://creativecommons.org/licenses/by/4.0/deed.sl To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja. 16.01.2021

## Sekundarni jezik

Jezik: Slovenski jezik Monte Carlo simulacija zračnega upora na elipsoid v gibanju Glavni cilj magistrskega dela je bila analiza zračnega upora na telo v gibanju v modelu, ki ne zahteva reševanja Navier-Stokesovih enačb, ampak deluje na osnovi mehanike in statistične fizike. Model je bil Monte Carlo (MC) simulacija gibanja molekul idealnega plina v zaprti posodi, v kateri je bilo telo, ki se je gibalo vzdolž ene od osi. Za večino izračunov je bil uporabljen pristop, ko je bilo telo pritrjeno na sredini simulacijske celice in je imela ena od komponent molekularne hitrosti dodaten člen, ki je simuliral pretok, kot da bi se telo pri tem gibalo s hitrostjo v nasprotni smeri. Najprej je bila ugotovljena linearna odvisnost sile upora od hitrosti pri nizki hitrosti pretoka za ravno ploščo, kar je bilo napovedano z linearnim zakonom upora. Pri visokih molekularnih pretokih je bila jasno opažena kvadratna odvisnost, predvidena z Bernoullijevo enačbo. Rezultati izračuna ustreznih koeficientov upora za ravno ploščo so se ujemali z analitičnimi vrednostmi za oba režima hitrosti. Po analogiji je bila narejena simulacija za sferično telo, ki je prav tako pokazalo močno kvadratno odvisnost pri visokih hitrostih in je bila vrednost koeficienta upora približno enaka analitični. V nadaljevanju smo sistematično preučevali elipsoide s krožnim prerezom, kjer smo spreminjali razmerje med polosema v smeri gibanja oziroma v pravokotni smeri. Rezultati za elipsoid so pokazali, da je vrednost koeficienta zračnega upora največja za ravno ploščo (mejni primer elipsoida, ko se polos v smeri gibanja približa vrednosti 0) in zmanjšuje z raztezanjem telesa vzdolž osi toka. Ko je bila Maxwellova porazdelitev molekularnih hitrosti, ki je bila v glavnem uporabljena, nadomeščena z enakomerno hitrostjo povprečnega kvadratnega korena (RMS), so bili koeficienti zračnega upora nekoliko drugačni. Zračni upor, sila upora, kvadratni zakon upora, koeficient upora, simulacija Monte Carlo (MC), Maxwellova porazdelitev.

## Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
 0 - 0 / 0 Ni komentarjev!

Nazaj