| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Izdelava pogovornega robota z rekurentno nevronsko mrežo LSTM : diplomsko delo
Authors:ID Piko, Tomaž (Author)
ID Holobar, Aleš (Mentor) More about this mentor... New window
ID Borovič, Mladen (Comentor)
ID Ojsteršek, Milan (Comentor)
Files:.pdf UN_Piko_Tomaz_2020.pdf (1,27 MB)
MD5: D6AB9D8928D9C18BE691FE242222D270
PID: 20.500.12556/dkum/70fcbf82-06d6-4da5-99c4-baf7ba31810d
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:V diplomskem delu so v prvem delu najprej predstavljeni pogovorni roboti in njihovi tipi, nato rekurentne nevronske mreže ter delovanje različnih celic, ki jih pri njih najpogosteje srečujemo. V drugem delu pa je prikazan primer implementacije in učenja rekurentne nevronske mreže LSTM (Long Short-Term Memory) ter izdelava mobilne aplikacije, v kateri lahko pisno komuniciramo z izdelano mrežo oziroma našim pogovornim robotom v slovenskem ali angleškem jeziku.
Keywords:pogovorni roboti, rekurentne nevronske mreže, celica LSTM, obdelava naravnih jezikov
Place of publishing:Maribor
Place of performance:Maribor
Publisher:[T. Piko]
Year of publishing:2020
Number of pages:IX, 52 f.
PID:20.500.12556/DKUM-77606 New window
COBISS.SI-ID:38731523 New window
Publication date in DKUM:03.11.2020
Categories:KTFMB - FERI
Copy citation
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share

Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.


License:CC BY 4.0, Creative Commons Attribution 4.0 International
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Licensing start date:07.09.2020

Secondary language

Title:Chatbot implementation using a LSTM recurrent neural network
Abstract:The first part of this diploma thesis describes chatbots and their types. We then describe recurrent neural networks and how their most frequently used types of cells work. The second part shows an example of implementing and training a recurrent neural network LSTM (Long Short-Term Memory) and developing a mobile application in which we can communicate with the created neural network and our own chatbot via text in the Slovenian or English language.
Keywords:chatbots, recurrent neural networks, LSTM cell, natural language processing


Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
There are no comments!

Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica