| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Prepoznavanje aktivnosti osebe iz zaporedja slik z globokimi povratnimi nevronskimi mrežami : diplomsko delo
Authors:ID Pintarič, David (Author)
ID Potočnik, Božidar (Mentor) More about this mentor... New window
ID Šavc, Martin (Comentor)
Files:.pdf UN_Pintaric_David_2019.pdf (3,78 MB)
MD5: 105ED7C777B9ADABCC234A1791B0438A
PID: 20.500.12556/dkum/76f27807-572f-4578-bb64-412c35abe89b
 
Language:Slovenian
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:V diplomskem delu se ukvarjamo s problemom prepoznavanja aktivnosti osebe iz zaporedja slik, pri čemer prepoznavo poskušamo izboljšati z upoštevanjem časovne komponente. To dosežemo z uporabo povratnih nevronskih mrež. Omejili smo se na naslednje aktivnosti: oseba ni v ravnovesju, se pripogiba, stoji, sedi, leži, hitro hodi, počasi hodi in pada. Pregledali smo obstoječe postopke prepoznavanja, preučili povratne nevronske mreže, pripravili množico podatkov, zasnovali algoritem, izvedli eksperimente in na koncu analizirali rezultate. Rezultati na 25 označenih videoposnetkih so pri uporabi povratne nevronske mreže pokazali 83,24 % povprečno natančnost pri uporabi tipa zaporedje v vektor in 75,53 % povprečno natančnost pri uporabi tipa zaporedje v zaporedje. Kljub temu da so dobljeni rezultati boljši od tistih, kjer ne upoštevamo časovne komponente, ugotavljamo, da povratne nevronske mreže zaradi računske zahtevnosti niso vedno najboljša izbira.
Keywords:računalniški vid, povratna nevronska mreža, pomnilna celica LSTM, pomnilna celica GRU, globoko učenje, detekcija oseb, prepoznavanje aktivnosti osebe
Place of publishing:Maribor
Place of performance:Maribor
Publisher:[D. Pintarič]
Year of publishing:2019
Number of pages:VII, 46 str.
PID:20.500.12556/DKUM-74880 New window
UDC:004.8:004.93(043.2)
COBISS.SI-ID:22912790 New window
NUK URN:URN:SI:UM:DK:ULUXJAAG
Publication date in DKUM:23.11.2019
Views:1347
Downloads:255
Metadata:XML RDF-CHPDL DC-XML DC-RDF
Categories:KTFMB - FERI
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:11.09.2019

Secondary language

Language:English
Title:Person activity recognition from image sequence using deep recurrent neural networks
Abstract:The diploma thesis deals with the problem of person activity recognition from a sequence of images, while trying to improve recognition by taking into account the temporal data component. This is achieved through the use of recurrent neural networks. The focus was limited to the following activities: a person is out of balance, bending, standing, sitting, lying down, walking fast, walking slowly and falling. The existing identification methods were reviewed, the recurrent neural networks were examined, a large dataset was prepared, an algorithm was designed, experiments were conducted and finally the results were analysed. The results on the 25 labeled videos showed an 83.24% average accuracy rate when using a sequence-to-vector type recurrent neural network and a 75.53% average accuracy rate when using a sequence-to-sequence type of a recurrent neural network. Although the results obtained are better than those where the temporal data component is disregarded, it can be concluded that recurrent neural networks, due to the computational complexity, are not always the best choice.
Keywords:computer vision, recurrent neural network, LSTM cell, GRU cell, deep learning, human object recognition, human activity recognition, person activity recognition


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica