| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Nekatere lastnosti posplošenih grafov Sierpińskega
Authors:ID Bezgovšek, Teja (Author)
ID Peterin, Iztok (Mentor) More about this mentor... New window
Files:.pdf MAG_Bezgovsek_Teja_2019.pdf (627,83 KB)
MD5: EDFF5F6DE8F3598E955DF50AFF98E655
PID: 20.500.12556/dkum/abe39299-e6e0-4743-ace5-4771ae5183d8
 
Language:Slovenian
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FNM - Faculty of Natural Sciences and Mathematics
Abstract:V magistrskem delu so obravnavane in s slikovnimi zgledi predstavljene nekatere lastnosti posplošenih grafov Sierpińskega, zgrajenih na poljubnem baznem grafu G. V prvem poglavju so povzete osnovne definicije iz teorije grafov, ki so pomembne pri razumevanju magistrskega dela. Nato so predstavljeni grafi Sierpińskega in definirani posplošeni grafi Sierpińskega. Tretje poglavje obravnava popolno kromatično število obravnavanih grafov, med drugim tudi za konkretne primere baznih grafov, in sicer graf hiše, kolo, cikel in hiperkocko. V četrtem poglavju so z zgledi podane formule za izračun števila listov, število vozliščnega pokritja in neodvisno število v posplošenih grafih Sierpińskega. V poglavju je tudi dokazano, da sta kromatično in klično število teh grafov enaka kot v bazi. V nadaljevanju je podana zgornja meja dominacijskega števila obravnavanih grafov in tudi točno dominacijsko število teh grafov z dotičnimi lastnostmi. V zadnjem poglavju je dokazana spodnja meja krepke metrične dimenzije posplošenih grafov Sierpińskega in podana je formula za izračun te lastnosti v obravnavanih grafih, v katerih je vsako notranje vozlišče presečno vozlišče.
Keywords:posplošeni grafi Sierpińskega, popolno kromatično število, število vozliščnega pokritja, dominacijsko število, krepka metrična dimenzija.
Place of publishing:Maribor
Publisher:[T. Bezgovšek]
Year of publishing:2019
PID:20.500.12556/DKUM-73052 New window
UDC:519.17(043.2)
COBISS.SI-ID:24415496 New window
NUK URN:URN:SI:UM:DK:CJXEGPVW
Publication date in DKUM:04.03.2019
Views:1275
Downloads:99
Metadata:XML RDF-CHPDL DC-XML DC-RDF
Categories:FNM
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:27.01.2019

Secondary language

Language:English
Title:Some properties of generalized Sierpiński graphs
Abstract:This master's thesis deals with certain properties of generalized Sierpiński graphs, which are based upon an arbitrary base graph G. The first chapter summarizes certain basic definitions from the theory of graphs, which are important for understanding the concepts described in this thesis. Later Sierpiński graphs and generalized Sierpiński graphs are defined. The third chapter discusses the total chromatic number of the graphs that are dealt with in this thesis, among others actual examples of base graphs, namely house graph, wheels, cycles and hypercubes. In chapter four the given examples present us certain formulas for calculating the number of leafs, the vertex cover number and the independence number of generalized Sierpiński graphs. In this chapter we also show that the chromatic and the clique number of such graphs is the same as in the base graph. In the following the upper bound of the domination number of the discussed graphs is given as well as the exact domination number in the case of special properties of the base graph. In the final chapter we present a lower bound of a strong metric dimension of generalized Sierpiński graphs and gives the formula, which is necessary to calculate these features in these graphs, in which each internal vertex is also considered to be a cut vertex.
Keywords:generalized Sierpiński graphs, total chromatic number, vertex cover number, domination number, strong metric dimension.


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica