| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document

Title:Posplošitve markovskih funkcij in njihove inverzne limite
Authors:Lunder, Tjaša (Author)
Banič, Iztok (Mentor) More about this mentor... New window
Milutinović, Uroš (Co-mentor)
Files:.pdf DOK_Lunder_Tjasa_2019.pdf (1,65 MB)
 
Language:Slovenian
Work type:Doctoral dissertation (mb31)
Typology:2.08 - Doctoral Dissertation
Organization:FNM - Faculty of Natural Sciences and Mathematics
Abstract:Disertacija se ukvarja s študijem posebnih tipov posplošenih inverznih limit. V disertaciji smo uspešno rešili problem izbire definicije posplošenih markovskih funkcij in definicije enakosti vzorcev dveh takšnih funkcij, ki nam omogoča, da se tudi za razred večličnih preslikav dokaže izrek analogen izreku Holtove v [11]. Izrek Holtove velja samo za surjektivne enolične markovske preslikave. Naš izrek pa velja tudi za večlične funkcije, velja celo brez predpostavke o surjektivnosti. Tako pri markovskih preslikavah kot pri naših, posplošenih markovskih preslikavah, so particije končne množice. V nadaljevanju disertacije smo pokazali, da je možna tudi nadaljnja posplošitev, pri kateri so particije števno neskončne. Na ta način smo vpeljali števno markovske funkcije ter enakost vzorcev števno markovskih preslikav. Tudi ti dve definiciji sta bili ustvarjeni tako, da sta omogočili dokaz izreka o homeomorfnosti posplošenih inverznih limit v primeru, kadar so vezne preslikave števno markovske funkcije z enakimi vzorci. Tudi ta izrek smo dokazali brez predpostavke o surjektivnosti. To teorijo smo v nadaljevanju aplicirali na šotorske funkcije in funkcije oblike N (dva posebna razreda enoličnih in večličnih funkcij). V zadnjem poglavju smo predstavili nekaj odprtih problemov.
Keywords:markovska preslikava, ve£li£na funkcija, navzgor polzvezna funkcija, posplo²ena markovska funkcija, ²tevno markovska funkcija, inverzno zaporedje, inverzna limita, ²otorska funkcija, funkcija oblike N.
Year of publishing:2019
Publisher:T. Lunder]
Source:[Maribor
UDC:515.126(043.3)
COBISS_ID:24392968 Link is opened in a new window
NUK URN:URN:SI:UM:DK:IRMPFKQE
License:CC BY-NC-ND 4.0
This work is available under this license: Creative Commons Attribution Non-Commercial No Derivatives 4.0 International
Views:362
Downloads:35
Metadata:XML RDF-CHPDL DC-XML DC-RDF
Categories:FNM
:
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Title:Generalizations of markov maps and their inverse limits
Abstract:The doctoral dissertation studies special types of generalized inverse limits. In the dissertation we successfully solved the problem of a good choise for the definition of generalized Markov functions and the definition of the same pattern of two such functions, which enables us to prove an analogue Theorem as in [11] for set-valued functions. Holte's Theorem refers only to surjective single-valued Markov functions. Our Theorem refers to set-valued functions, even without the assumption of surjectivity. Markov functions as well as ours, generalized Markov functions, have finite partitions. In the next part of the doctoral dissertation we have proven, that a further generalization is possible, where the partitions are countable infinite. With this we introduced countably Markov functions and the same pattern of two such functions. These two definitions have been created to enable us to prove the Theorem of homeomorficness of generalized inverse limits when the bonding functions are countably Markov functions with the same pattern. This theorem has also been proven without the assumption of surjectivity. We have applied this Theory to tent functions and functions of the shape N (two special types of single-valued and set-valued functions). In the last chapter we introduced some open problems.
Keywords:Markov interval map, set-valued function, upper semi-continuous function, generalized Markov function, countably Markov function, inverse sequence, inverse limit, tent function, function of the shape N.


Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica